PDLX002
Definition of Terms
Date: 15 May 2000

Definition of Terms

Acceptance: An action by an authorized representative of the acquirer by which the acquirer assumes ownership of software products as partial or complete performance of a contract. .

Acquisition Organization: that entity which has the oversight responsibility for the software acquisition project and which may have purview over the acquisition activities of a number of projects or contract actions. [54].
Acquirer: An organization that procures products for itself or another organization.

Acquisition Strategy: The conceptual framework for conducting systems acquisition encompassing the broad concepts and objectives that direct and control the overall development, production, and implementation of a system. It must be stable enough to provide continuity but dynamic and flexible enough to accommodate change.

Action Item (AI): (1) A unit in a list that has been assigned to an individual or group for disposition, and (2) an action proposal that has been accepted.

Activity: Any step taken or function performed, both mental and physical, toward achieving some objective. Activities include all the work the managers and technical staff do to perform the tasks of the project and organization. (See task for contrast.) Any step taken or function performed, both mental and physical, toward achieving some objective. Activities include all the work the managers and technical staff do to perform the tasks of the project and organization. [14].

Actual Cost: The cumulative actual cost incurred on the project to date. [56].

Actual Cost of Work Performed (ACWP): also known as “actual cost”. The actual cost of planned work actually accomplished to-date. The costs actually incurred and recorded in accomplishing the work performed within a given time period. [49].
Adaptive Maintenance: Software maintenance performed to make a computer program usable in a changed environment.

ADS Folder: The ADS folder is intended to provide identification of technical and programmatic information needed for the development, modification and maintenance of an ADS. The ADS folder will be maintained and updated for the life of the ADS. This folder is subject for review by all levels of management throughout all phases of the development and operational use. A cover page will be created and placed at the front of the folder, which lists all documents included, and where they are located (file plan).

Affected Groups/Parties: those with related responsibilities or obligations whose work performance might be impacted. Such groups might include software engineering, software estimating, system engineering, hardware engineering, system test, and etc. [30].

Allocated Baseline (ABL): That period in the life cycle of a requirement that is after the Functional Baseline (FBL) and before Design Baseline (DBL). The milestone, which places the requirement into the ABL, is the Software Specification Review (SSR)/Preliminary Design Review (PDR). All Configuration Items (CI) must pass the SSR/PDR prior to proceeding into the ABL. The ABL remains until it has successfully accomplished a Critical Design Review (CDR). [20]

Allocated Requirement: a system requirement allocated to software. [30]. Author’s opinion: allocated requirements are documented by the Requirements Specification (RS) and tracked via the Requirements Traceability Matrix (RTM). (See system requirements allocated to software.)

Alpha Testing: Testing of a software product or system conducted at the developer’s site by the customer [11]. The first test of a product, using real input, when it is still in an unfinished state. Alpha tests are usually internal to an organization and are followed by Beta tests. [56].

Analysis: An early phase of development, focused upon discovering the desired behavior of a system together with the roles and responsibilities of the central objects that carry out this behavior. [55].
Approval Authority (AA): The AA is an individual authorized to commit resources to satisfy a requirement. An AA will be identified from each of the user and software support organizations for every validated requirement. AAs jointly approve official delivery schedules, version/release content, and changes to requirements, cost, and schedule.

Approved Requirement: A requirement that has received corporate agreement through an approval process on a technical solution to satisfy the validated requirement. Documented via an IT/NSS Requirements Document or other approved requirements document. See Functional Requirement.

Application Domain: A bounded set of related systems (i.e., systems that address a particular type of problem). Development and maintenance in an application domain usually requires special skills and/or resources. Examples include payroll and personnel systems, command and control systems, compilers, and expert systems.

Approval: Written notification by an authorized representative of the acquirer that the developer’s plans, design, or other aspects of the project appear to be sound and can be used as the basis for further work. Such approval does not shift responsibility from the developer to meet contractual requirements.

Apportioned Effort: Effort that by itself is not readily divisible into short-span work packages but which is related in direct proportion to measured effort. [49].

Architecture: An architecture is defined in IEEE 610.12 as the structure of components, their relationships, and the principles and guidelines governing their design and evolution over time. DoD has implemented this by defining an interrelated set of architectures: Operational, Systems, and Technical. The diagram below shows the relationship among the three architectures. The definitions are provided here to ensure a common understanding of the different types of architectures. [48] See Operational Architecture, System Architecture and Technical Architecture. Architecture: the organizational structure of a system or CI, identifying its components, their interfaces, and a concept of execution among them. The logical and physical structure of a system, forged by all of the strategic and tactical design decisions applied during development. A well-structured object-oriented architecture consists of a sea of classes together with the mechanisms that animate those classes. [55]. The structure and interrelation of a system’s components, including the relation of the interface to its operational environment. [56].

.

[image: image1.wmf]Technical

• –––

• –––

• –––

• –––

Operational

Systems

• –––

• –––

• –––

• –––

Processing and

Information

Exchange

Requirements

Time-phased

Technical

Guidance

Overlays Capabilities on Requirements

Identifies Warfighter

Information Needs

Identifies Rules, Standards

and Conventions

Processing and Information

Exchange Requirements

New Technology

Capabilities

Technology Insertion

Feedback

Architecture Relationships
Assessment: See software process assessment.

 Assurance: A planned and systematic pattern of actions necessary to provide confidence that expected performance is achieved.
Attribute: Attributes identify properties or characteristics of an entity. Attribute names should be singular nouns or noun phrases. An attribute equates to a column in a table.

Audit: An independent examination of a work product or set of work products to assess compliance with specifications, standards, contractual agreements, or other criteria. [5] An independent examination of a (software) work product or set of (software) work products to assess compliance with specifications, standards, contractual agreements, or other criteria. [27]. An independent examination of a work product or set of work products to assess compliance with specifications, standards, contractual agreements, or other criteria. [5]. An independent review of product development and process execution to confirm that they conform to standards, guidelines, specifications, and procedures. [56] See Functional Configuration Audit and Physical Configuration Audit.

Authentication: The procedure (essentially approval) used by the approval authority in verifying that specification content is acceptable. Authentication does not imply acceptance or responsibility for the specified item to perform successfully.

Automated Information System (AIS): A combination of computer hardware and software, data, or telecommunications that performs functions such as collecting, processing, transmitting, and displaying information. Excluded are computer resources, both hardware and software that are physically part of, dedicated to, or essential in real time to the mission performance of weapon systems. [29]. An assembly of procedures, processes, methods, routines, or techniques (including, but not limited to, computer programs) united by regulated interaction to form an organized whole and specifically designed to make use of Automated Data Processing Equipment (ADPE). [47].

Baseline: A set of configuration items (software documents and software components) that has been formally reviewed and agreed upon, that thereafter serves as the basis for future development, and that can be changed only through formal change control procedures. See Functional, Allocated, or Product Baseline. A document or set of such documents formally designated and fixed at a specific time during the life cycle of a configuration item. Any agreement or result designated and fixed at a given time, from which changes require justification and approval. [52]. An ordered collection of software configuration items (SCIs). A reference point or plateau in the development of a system. A baseline represents the assignment of a document identifier to each software product configuration item (CI) and associated entities: source code, relocatable code, executable code, files controlling the process of generating executable code from source code, documentation, and tools used to support development or maintenance of the software product.

Baseline Management: In configuration management, the application of technical and administrative direction to designate the documents and changes to those documents that formally identify and establish baselines at specific times during the life cycle of a configuration item. [52].

Baseline Plan: The original project plan you use to track progress during a project. The baseline plan includes task start and finish dates and resource and cost information. [44].

Behavioral Design: the design of how an overall system or CI will behave, from a user’s point of view, in meeting its requirements, ignoring the internal implementation of the system or CI. This design contrasts with architectural design, which identifies the internal components or the system or CI, and with the detailed design of those components. [28].

Behavioral Prototype: An intermediate release of software used to explore alternative designs or to further analyze the dark corners of a system’s functionality. Prototypes are distinctly not production-quality artifacts; hence, during the evolution of a system, their ideas but not their substance are folded into production architectural releases. [55].

Beta testing: Testing conducted at one or more customer sites by the end-user of a delivered software product or system [11]. This is usually a “friendly” user and the testing is conducted before general release for distribution. Testing a product in its intended environment with the results used for their intended application. [56].

Block Release: Action taken to correct accumulated discrepancies or to incorporate one or more requirements for implementation as a single controlled release. Three criteria must be met for a block release change: 1) the requirements are validated and prioritized by the FRB. 2) The schedule is defined by the software development office and approved by the CCB. 3) All configuration management and baselined documents are completed before the block change is released to the production sites. Same as Release.

Black Box Testing: Testing based on requirements without knowledge of the internal program structures and data. Also called closed-box testing or functional testing, which is defined as the application of test data derived from the specified functional requirements without regard to the final program structure, in [1]. Relates to testing the function the code defines--without looking at the code itself (usually). One creates inputs, executes them, and looks at the outputs, comparing them to expected outputs. A limitation of black box is that it will not tell you if there is a missing function. Attempts to find errors in the following categories: incorrect or missing functions; interface errors; errors in data structures or external database access; performance errors; initialization and termination errors. [18] Also called Functional Testing [18]. While Unit Testing and Integration Testing is considered White Box testing, Systems, Interface and Interoperability Testing is Black Box.

Branch Testing: A test method satisfying coverage criteria that require that for each decision point, each possible branch is executed at least once. [12].

Budget at Completion (BAC): The sum of all budgets established for the contract. [49] The distributed and undistributed budgets plus management reserve (same as Total Allocated Budget). This is usually the contract target or estimated cost plus authorized unpriced work.

Budgeted Cost of Work Performed (BCWP): also known as “the earned value”. The budgeted value of planned work actually accomplished (completed) to-date. The sum of the budgets for completed work packages and completed portions of open work packages, plus the applicable portion of the budgets for level of effort and apportioned effort. [49].

Budgeted Cost of Work Scheduled (BCWS): also known as “the planned work”. The sum of the budgets for all work packages, planning packages, etc., scheduled to be accomplished (including in-process work packages), plus the amount of level of effort and apportioned effort scheduled to be accomplished within a given time period. [49].

Build: (1) A version of software that meets a specified subset of the requirements that the completed software will meet. (2) The period of time during which such a version is developed. Note: It may take several builds to reach a releasable version.
Build Standard: The incorporated hardware or software standards (product baseline) of the specific system, as confirmed by Quality Assurance. Design Build Standard. Incorporating both the design and the build standards, records the design requirements and the embodiment status.

C4 Systems Requirements Document (C4RD): AFMC Form 321, C4 Requirements Document, or succeeding document. No resources shall be acquired or expended without an approved requirements document (C4RD) recorded in the HQ SSG Management Information System (MIS). Category I C4RDs are reviewed/validated and approved/disapproved by the 2-letter Directors. Category II and III C4RDs will be handled by the HQ SSG Requirements Processing Working Group (RPWG) or Communications-Computer Systems Requirements Board (CSRB). [33] The Customer may or may not be the originator of the C4RD; it may originate with the Provider or other AF Agency. [36] All new requirements for all new or existing C4 systems will be documented by a C4RD [38]. See DR. A Program may have one or more Projects. A Project may have one or more Releases. A Release may have one or more C4RDs. A C4RD may have one or more functional requirements. A Functional Requirement may have one and only one C4RD. A C4RD may have one and only one Project. A Project may have one and only one Program.

Capability Maturity Model Integration (CMMI®) The Capability Maturity Model (CMM) is a suite of products that include models, appraisal methods, and training. This suite of products provides guidance to organizations to help them improve their processes and their ability to manage the development, acquisition, and maintenance of products and services. CMM places proven practices into a structure that helps an organization assess its processes, establish priorities for improvement, and guide the implementation of these improvements. CMMI is a combination of systems engineering, software Engineering and Integrated Product and Process Development Capability Maturity Models.
Certificate of Networthiness: Document signed by the AF-CIO. It states the system has been evaluated and determined that the impacts and risks (in terms of Networthiness) of fielding the system is at an acceptable level

Certification: A process, which may be incremental, by which a contractor provides evidence to the acquirer that a product meets contractual or otherwise specified requirements.
Change Control: The review, approval/disapproval, implementation, tracking, closure, and status reporting have proposed changes to an item (change management). [54].

Change Request: The formal documentation that is prepared for a request to change a specification in accordance with the SCM Change Procedure.

Classes: A collection of objects, grouped on common characteristics, defining the attributes and methods associated with each object in the class. [26]. A set of objects that share a common structure and a common behavior.[55]. A plane is a class, a 747 is an object.

Class Diagram: A diagram that is used to show the static existence of classes, class categories, and their relationships.[55].

COCOMO (Constructive Cost Model): A closely related family of software cost estimating models developed by Dr. Barry Boehm of TRW. [56].

Code Complexity: The complexity of software code, usually affected by factors such as cohesion, coupling, modularity, and module complexity factors including SLOC, nested loops, global variables, and GOTO statements. [56].

Collateral Metrics: Secondary metrics gathered as an unexpected byproduct of the gathering of the expected primary metrics. These may not be needed or even useful, but then again, may prove to be of value later. Consider saving, even if costly.[12].

Command-Level Metrics. These are metrics developed at HQ AFMC, recurring data requests from HQ AFMC requiring data from the field, data/metrics used to measure the field’s performance, and/or data/metrics briefed above HQ AFMC directorates and staff offices. Command-level metrics does not include internal HQ AFMC directorate/staff metrics provided they do not task or report on offices outside of that directorate
Comments: Textual strings, lines, or statements that have no effect on compiler or program operations. Usually designated or delimited by special symbols. Omitting or changing comments has no effect on program logic or data structures. [37].

Commercial Off-The-Shelf (COTS) Software: Commercially purchased, third party software used to accomplish a specific function such as spreadsheets, word processing, utilities, and graphics.

Compiler Directives: Instructions to compilers, preprocessors, or translators. Usually designated by special symbols or keywords. [37].

Complexity Estimate: A numerical prediction of the probable number of interrelated factors that cause projects to be viewed as complex. Models that measure logic, code, and data complexity include the McCabe Cyclomatic and Essential complexity metrics, the NPATH complexity metric, SPQR, and CHECKPOINT. [56].

Compliance Terminology - The words "will", "shall", "must", and "required" are used to denote mandatory activities. The words "should", "could", "may", or "recommend" are used to denote recommended activities or alternatives not considered mandatory.
Compatibility: The ability of two or more systems or components to perform their required functions while sharing the same hardware and software environment. Also, the ability of two or more systems or components to exchange information.

Component/Equipment: Reparable assemblies that currently require repair parts support or will require it when introduced into an inventory.

Computer Aided Software Engineering (CASE): The use of computers to aid in the software engineering process. May include the application of software tools for software design, requirements tracing, code production, testing, document generation, and other software engineering activities.

Computer Hardware: Devices capable of accepting and storing computer data, executing a systematic sequence of operations on computer data, or producing control outputs. Such devices can perform substantial interpretation, computation, communication, control, or other logical functions.

Computer Program: A combination of computer instructions and data definitions that enable computer hardware to perform computational or control functions.

 Configuration Item (CI) - A collection of hardware or software elements treated as a unit for the purpose of configuration management. CI defines the “granularity” of the SCM. SCI defines what is needed to be visible to those needing to be aware of the state of the project. CI ensures that the identification scheme reflects the structure of the product, the project, and the organization. The identification process must be coupled with the process of labeling an item with a distinct and unique label. The size of the “grains’ identified by the CI process can never be consistent. CI is a critical project management task. Criteria for selecting CIs: every operational program, including utilities, and diagnostic programs, and those which are not truly directly related to others; everything that has the potential for multiple use; the capabilities of the functions developed (in toto or in sequence); items which are particularly volatile (e.g., those with a particularly high technical importance or having separate, detailed specifications). [53].

Computer Software Configuration Item (CSCI): An aggregation of software that satisfies an end use function and is designated for separate configuration management by the acquirer. CIs are selected based on tradeoffs among software function, size, host or target computers, developer, support concept, plans for reuse, criticality, interface considerations, need to be separately documented and controlled, and other factors. [28] For government projects consisting of 100K to 500K lines of code, the program should be set up with one, or at most two, CIs. Generally, a software function should be designated as a CSCI if it: 1) runs on a different computer; 2) is being developed by a different contractor; 3) is run at a different time (e.g., a data analysis program which is run after the main software has finished running.) You may want to design a software as a CSCI if will run as a independent program or process and: 1) it is very complex; 2) the interfaces to/from the program are complex or involve moving a large quantity of data; 3) the requirements for the program are more fluid than other programs and you expect to see changes during development; 4) the program is high risk from a technical, schedule, or cost perspective. [15]. See Software Unit.
Conceptual Model: See Domain Model.

Configuration: The functional and/or physical characteristics of hardware/software as set forth in technical documentation and achieved in a product. (MIL-STD-973).

Configuration Audit: A review conducted to verify that the development of a configuration item has been completed satisfactorily, that the item has achieved the performance and functional characteristics specified in the functional and allocated configuration identification, and that its operational and support documents are complete and satisfactory. See Functional Configuration Audit (FCA) and Physical Configuration Audit (PCA).

Configuration Control: An element of configuration management, consisting of the evaluation, coordination, approval or disapproval, and implementation of changes to configuration items after formal establishment of their configuration identification. [[59]]. The systematic evaluation, coordination, approval or disapproval, and dissemination of proposed changes and implementation of all approved changes in the configuration of any item after formal establishment of its configuration baseline.

Configuration Control Board - A group of people responsible for evaluating and approving or disapproving proposed changes to configuration items (CIs), and for ensuring implementation of approved changes.

Configuration Control Directive (CCD): Authorizing document for configuration identification and control activities.

Configuration Documentation: Configuration documentation is the sum of all the documents that define the physical and functional characteristics of a system, subsystem, CSCI, HWCI, or designated equipment, for example, specifications, design documents, engineering drawings, source code listings.

Configuration Management (CM): A discipline applying technical and administrative direction and surveillance to identify and document the functional and physical characteristics, record and report change processing and implementation status, and verify compliance with specified requirements [5]. The process of identifying and defining the configuration items in a system, controlling the release and change of these items throughout the system life cycle, recording and reporting the status of configuration items and change requests, and verifying the completeness and correctness of configuration items.

Configuration Management Library System: The tools and procedures to access the contents of the software baseline library.

Configuration Management Plan (CMP): Addresses each phase of the system Life Cycle and establishes the type of operation and any support agency interfaces. The CMP will use the Software Life Cycle Model (SLCM) outlined in the SCCC Paradigm guidebook, and uses the high-level flow diagram as the backbone of all planning and implementation. The high level flow diagram can be broken down into activities that are broken out into checklists and references for each individual activity. Each checklist guides the different individuals or groups through the tasks for that specific activity. The checklists are further expanded with detailed explanations for each item or task. The configuration management plan defines the implementation (including policies and methods) of configuration management on a particular program/project.

Configuration Reviews: Ensure technical understanding and visibility while verifying that the design satisfies the requirement. Reviews are part of the system engineering process, which is a logical sequence of activities and decisions for developing a communications-computer system.

Configuration Status Accounting; A process of configuration management, consisting of the recording and reporting of information needed to manage a configuration effectively. This information includes a listing of the approved configuration identification, the status of proposed changes to the configuration, and the implementation status of the approved changes. Answers the questions: what happened; when did it happen; what were the reasons; who authorized the change; who made the change and what item were affected. [53]. A process of configuration management consisting of the recording and reporting of information needed to manage a configuration effectively. This information includes a listing of the approved configuration identification, the status of proposed changes to the configuration, and the implementation status of the approved changes.

Consistency: The degree of uniformity, standardization, and freedom from contradiction among the documents or parts of system or component. [[59]]

Contingency Factor: See Management Reserve.

Continuation Engineering: The act of engineering, or the group that performs the engineering, of a product after its release to the user. This engineering effort may be required to correct defects found after operational release, or it may be to add to or change the functionality of an existing product. In any case, this engineering work should follow the proper engineering practices that are expected of an original design effort. Also referred to as software maintenance, although maintenance is defined as keeping in an existing state, while in fact the product is undergoing an engineering change [12].

Continue: Statements that have no effect on a program’s logic other than to pass to the next statement. In some languages (FORTRAN is an example), labels can be attached to continue statements so that they can be used as destinations for or terminations of logical execution paths. [39].

Contractor: The organization that provides a product to the customer in a contractual situation (purchaser). [42]. An individual, partnership, company, corporation, association or other service, having a contract with an acquirer for the design, development, manufacture, maintenance, modification, or supply of items under the terms of a contract.

Contract: See Service Level Agreement (SLA) or SLA Annex. A mutually binding legal relationship obligating the seller to furnish the supplies or services (including construction) and the buyer (acquirer) to pay for them. It includes all types of commitments that obligate the acquirer to an expenditure of appropriate funds and that, except otherwise authorized, are in writing. In addition to bilateral agreements, contracts include but are not limited to awards and notices of awards; job orders or task letter issued under purchase orders under which the contract becomes effective by written acceptance or performance; and bilateral modifications.

Contract Integrity: The adherence and compliance to contractual and legal policies, regulations, and other guidance. [54].

Contracting Officer: Any person designated with authority to enter into, administer, or terminate contracts for a service or agency.

Contract Terms and Conditions: The stated legal, financial, and administrative aspects of a contract.

Services: The organization that provides contract-related inputs and advises on all issues regarding contract regulations and policy, contract interpretation, and contract enforcement. Performs as the government's primary interface with the contractor for all contract-related issues.

Contract Data Requirements List (CDRL): A list of required deliverables due on specific dates to fulfill contractual obligations.

Contract Budget Base (CBB): Total Authorized Work.

Control Account Code (CAC): A management control point at which budgets (resource plans) and actual costs are compared to compute earned value for management control purposes. A control account is a natural management point for planning and control since it represents the work assigned to one responsible organizational element on one program work breakdown structure element. There are two types of control accounts 1) work package and 2) planning package. See work package and planning package. Also known as cost account.

Control Account Manager: One who is responsible for a control account. Also known as cost account manager.

Corrective Maintenance: Maintenance performed specifically to overcome existing faults.

Cost Account: See Control Account.

Cost Account Manager: See control account manager.
Cost Performance Index (CPI): Measure of cost performance efficiency - "what is the relationship between the value (planned cost) of the work we accomplished and what it actually cost to do that work?" CPI = BCWP / ACWP.

Cost Reimbursement: A cost reimbursement contract means that the customer will reimburse the provider for the actual cost to produce a deliverable. Although approval may be required at different times during the term of the contract, there is no limit as to the final cost of the deliverable. [36]

Cost Variance XE "Cost variance:General" (BCWP - ACWP): The amount (value) by which the work actually accomplished under-ran (positive cost variance) planned costs or overran (negative cost variance) planned costs to-date. "By how much did the work we actually accomplished cost more or less than we planned?" Negative is unfavorable.

Cost Variance Percentage (CV%): Cost Variance / BCWP
Note: Negative is unfavorable.

Coverage Analysis: a dynamic test that determines whether particular parts of a program have been exercised. [18].

Critical Computer Resources: The parameters of the computing resources deemed to be a source of risk to the project because the potential need for those resources may exceed the amount that is available. Examples include target computer memory and host computer disk space. Critical computer resources may be in the host environment, in the integration and testing environment, in the target environment, or in any combination of these. [30] The parameters of the computing resources deemed to be a source of risk to the project because the potential need for those resources may exceed the amount that is available. Examples include target computer memory and host computer disk space.

Critical Dependency Items: Critical products, actions, pieces of information, etc., that must be provided by one individual or group to a second individual or group so that the second individual or group can perform a planned task. A group can vary from a single individual assigned part time, to several individuals dedicated full time. [46]

Critical Design Review (CDR): A review conducted: (1) to verify that the detailed design of one or more configuration items satisfies specified requirements; (2) to establish the compatibility among the configuration items and other items of equipment, facilities, software, and personnel; (3) to assess risk areas for each configuration item; and, as applicable; and (4) to assess the results of analyses, review preliminary hardware product specifications, evaluate preliminary test planning, and evaluate the adequacy of preliminary operation and support documents. A customer review of design documents for the purpose of creating the Design Baseline (DBL). The purpose of this event is to ensure that the design, as reflected in the DD, ICD, and DS is consistent with the requirements contained in the RS.

Critical Path: The series of tasks that must be completed on schedule for a project to finish on schedule. Each task on the critical path is a critical task. [45].

Cumulative Defect Removal Efficiency: The percentage of software defects found by all reviews, inspections, and tests prior to software delivery compared to all defects found during development and by users in a fixed time interval, such as the first year of operation. [56].

Customer: The individual or organization that is responsible for accepting the product and authorizing payment to the developing organization. An organization’s customer is the entity (individual or organization) that requires a product or service that can be provided by the organization. The customer can be internal or external. For the SEP: The customer or end user group: The organization (or individual who is called the representative) that is responsible for accepting or rejecting the product and authorizing (or withholding) payment to the developing (supplier) organization. The end user is the individual or group who will use the system for its intended operational use when it is deployed in its environment. End User Representatives are a selected sample of end users that represent the total population of end users. Customer/End User Group responsibilities in SEPV4 include:

- Prioritizing end user functional requirements. A method for doing so is via a Functional Requirements Board (FRB).

- Defining desired software products with acceptance criteria.

- Accepting or rejecting the software product.

- Authorizing or withholding payment

Customer Acceptance Review: A review by the customer with the project lead and project developers. Upon completion of the review, the customer signs off on (noting any discrepancies and required fixes) and accepts the software.

Cyclomatic Complexity: A measure of the number of linearly independent paths through a program module. [6].

Data: Recorded information, regardless of medium or characteristics, of any nature, including administrative, managerial, financial, and technical.

Data Flow Analysis: A static test. The graphical analysis of collections of (sequential) data definitions and reference patterns to determine constraints that can be placed on data values at various points of executing the source program [11]. Used to detect data flow anomalies (1) a variable value is undefined is referenced (2) a defined variable is redefined before it is referenced, or (3) a defined variable is undefined before it is referenced. [18].

Data Depot: Provides command-wide standardized database for integration of AFMC information systems allowing improved organizational response efficiency; enhanced decision-making; common view across Air Force; consistent process for data security; enhanced trend analysis/reporting; foundation for effective information delivery' manageable/supportable set of data interface standards for reusability.

 Data System Designator (DSD): The alphabetic and numeric short name for application system software within AFMC.

Database: A collection of related data stored in one or more computerized files in a manner that can be accessed by users or computer programs via a database management system.

Database Management System: An integrated set of computer programs that provide the capabilities needed to establish, modify, make available, and maintain the integrity of a database.

Database Specification (DS): Describes the database organization and storage allocation and provides the detailed data model of the logical and physical design, as well as other necessary information.

Data Item Description (DID): Describes the format and requirements for a contractual data requirement deliverable.

Declarations: A non-executable program statement that affects the assembler or compiler’s interpretation of other statements in the program. Examples include type and bounds declarations, variable definitions, declarations of constants, static initializations, procedure headers and argument lists, function declarations, task declarations, package declarations, interface specifications, generic declarations, and generic instantiations. [37].

Defect: A flaw in a system or system component that causes the system or component to fail to perform its required function or to produce incorrect results. A defect, if encountered during execution, that may cause a failure of the system. A flaw/bug/fault/problem/error in a software work product [CMM: A software work product is any artifact created as part of defining, maintaining, or using a software process, including, process descriptions, plans, procedures, computer programs and associated documentation, which may or may not be intended for a delivery to a customer or end user] that will prevent the accomplishment of an operational or mission essential capability. It is discovered by any source other than the author/developer/OPR (the one who creates the software work product) during the initial production of that software work product. It can be discovered at any point in the systems engineering process from Requirements Evaluation & Proposal, through Analysis, Design, Construction, to Customer Support.. Peer Reviews, Management Reviews, Tests and end user input are the most prevalent means by which defects are found.

DEFECT PRIORITIES ARE: (Ref: MIL-STD-498)

1. A flaw/bug/fault/problem/error that will prevent he accomplishment of an operational or mission essential capability.

2. A flaw/bug/fault/problem/error that will adversely affect the accomplishment of an operational or mission essential capability and no work-around is known.

3. A flaw/bug/fault/problem/error that will adversely affect the accomplishment of an operational or mission essential capability but a work-around solution is known.

4. A flaw/bug/fault/problem/error that will result in user/operator inconvenience or annoyance.

5. A flaw/bug/fault/problem/error that does not fit into one of the above priorities.

DEFECTS ARE NOT (SEPG’s interpretation):

1. A flaw/bug/fault/problem/error in the software work product that is discovered by the author/developer/OPR before the product is turned over to another source for review or testing. (This is considered work in progress.)

2. A flaw/bug/fault/problem/error in a software work product that could not possibly have been detected or even if detected would not have been corrected. (These are enhancements.)

3. Cosmetic, spelling or grammar errors.

HOW DEFECTS ARE DOCUMENTED:

1. Management/Peer Review minutes.

2. SSG Form 2234 (each line item).

3. Deficiency Reports (DR). A DR reported by an end user may or may not be a defect. The Project Manager determines this. Again, if it is not a defect it is an enhancement (see “DEFECTS ARE NOT, rule # 2 above).

Defects Introduced: the number of defects attributed to a flaw in the output of a particular activity, which might not be found until a later activity. Do not include duplicates. [50]. SEPG’s Interpretation: the thrust of this is that although you might find a defect in code during Testing Phase, it should actually be attributed to the source, perhaps the Design Document created and baselined during the Design Phase. Anytime the defect appears afterwards is considered a duplicate and should not be counted again.

Defect Analysis: Using defects as data for continuous quality improvement. [8].

Defect Density: Ratio of the number of defects to program length (a relative number) [8]. The number of defects identified in a product divided by the size of the product component (expressed in standard measurement terms for that product). The number of defects identified in a product divided by the size of the product component (expressed in standard measurement terms for that product).

Defect Prevention: the activities involved in identifying defects or potential defects and preventing them from being introduced into a product. [22].

Defect Potential: The probable number of defects from all causes that will be encountered during the development and production of a program or system. Defect potential is enumerated as the sum of five defect categories: requirements, design, coding, documentation, and bad fixes or secondary defects. [56].

Defect Prevention: Technologies and techniques that minimize the risk of human error. Defect prevention techniques include structured analysis and design, high-level languages, participation in joint application design sessions, and reviews and inspections. [56].

Defect Removal: Activities that are aimed at removing defects from software, including walkthroughs, reviews, inspections, editing, and all forms of testing. For military projects, defect removal is the second most expensive activity, with paperwork being the most expensive. A synergistic combination of defect prevention and defect removal can yield dramatic improvements in the quality of delivered software. [56].

Defect Removal Efficiency: The number of defects removed by a specific operation, such as a code inspection, review, or test, compared to the total number of defects found during software development and the first year of operations. [56].

Defect Root Cause: The underlying reason (e.g., process deficiency) that allowed a defect to be introduced.

Defense Information Infrastructure (DII): {Not a system.} It is the foundation to build a shared, heterogeneous information system. The DII includes the physical facilities used to collect, distribute, store, process and display voice, data, and imagery. The DII also includes the applications and data engineering practices to build and maintain the software that allow C2, intelligence, surveillance, reconnaissance, and mission support user to access, manipulate, and organize quantities of information. (http://spider.osfl.disa.mil/dii/). [51].

Deliverable: A product that is required by the contract to be delivered to the acquirer or other designated recipient. [54].

Delivered Statements: Statements that are delivered to a customer as part of or along with a software product. There are two subclasses: (1) statements delivered in source form; and (2) statements delivered in executable form but not as source. [37].

Deficiency Report (DR): A deficiency in an existing functionality. [38]. Software that does not function in accordance with its associated requirement specifications. [36] Are used when immediate corrective action is not required. [34] System enhancements or users' perceptions of how the system should work are not DRs and will not be accepted as such. DRs may be generated by field users, the customer or by the Provider as a result of field assistance calls. DRs will be worked as expeditiously as possible. The Provider will strive to have DRs opened no longer than 6 months. [36] Whether or not DRs can trigger IT/NSS Requirements Documents depends on how functional areas handle them and the categories of these DRs. If IT/NSS Requirements Documents are generated from DRs, most likely they will be AIS maintenance or modification based on man-years, not a dollar figure.[38] Identification of problems with baselined software work products (pre or post release). See IT/NSS Requirements Document.
Defined Level: Level 3 as defined by the SEI-CMM: The software process for both management and engineering activities is documented, standardized, and integrated into a standard software process for the organization. All projects use an approved, tailored version of the organization's standard software process for developing and maintaining software.

Deltas: A technique to store versions by storing only the differences between versions as opposed to storing each version in its entirety. Forward deltas store the oldest version in its entirety and later versions as deltas. Reverse deltas store the most recent version in its entirety and previous versions as deltas.

Dependency Item: A product, action, piece of information, etc., that must be provided by one individual or group to a second individual or group so that the second individual or group can perform a planned task.

Design: That phase is our software engineering process that is devoted to the design. Design is that aspect of the specification process that involves the prior consideration of implementation. Design extends and modifies an analysis specification; it also accommodates certain qualities in an application, including extensibility, reusability, testability, and maintainability. [26] Those characteristics of a system or CSCI that are selected by the developer in response to the requirements, such as definitions of all error messages, others will be implementation related, such as decisions about what software units and logic to use to satisfy the requirements. An intermediate phase of development, focused upon inventing an architecture for the evolving implementation and specifying the common tactical policies that must be used by disparate elements of the system. [55].

Design Completeness: The design shall be complete from a total system element viewpoint (hardware, facilities, personnel, computer software, and procedural data).

Design Document (DD): Documents the allocation of requirements, system/software designs, and internal/external interfaces.

Design Records: Design records refers to all technical documentation necessary to define the design, manufacture, packaging, testing, installation, and maintenance of the system and its comprising elements.

Design Review: An informal or formal, technical review of the design of the product [20] see Review. A formal, documented comprehensive and systematic examination of a design to evaluate the design requirements and the capability of the design to meet these requirements and to identify problems and propose solutions. [42].

Design Simplicity: The concept of design simplicity and standardization shall be evident.

Design Standard: The definition of what is to be built, as defined by approved drawings, etc., and subsequent approved changes.
Designer (D): supports the Lead Designer. Each PROJECT may have one or many. Each Designer may be assigned to more than one PROJECT. May perform other roles on the PROJECT but should not be the SPAR.

Desk Checking: A form of manual static analysis, usually performed by the originator. Source code, documentation, etc., is visually checked against standards. It is cheap, effective, and usually underestimated and under applied. (Maybe if we called it an individual design review, it would get more respect. This is where pride in workmanship and individual empowerment are exhibited). [12].

Desk Procedures: In relationship to the SEP, anything, which is at a lower level than a procedure step.

Developer: An organization that develops products ("develops" may include new development, modification, reuse, reengineering, maintenance, or any other activity that results in products) for itself or another organization.

Development Strategy: There are three basic development strategies and a generic "other" that defines the variations, combinations of the other three. Grand design - is essentially a right-first-time approach; incremental - identifies user needs, defines system requirements, and performs the remaining software development in a sequence of builds. The first build contains part of the planned capabilities and so on until the system is complete. Evolutionary - development in builds but differs from incremental in that the system requirements need not be defined up front but refined in each succeeding build. Deviations - a specific written authorization, granted before the manufacture of a configuration item to depart from a particular performance or design requirement of a specification, drawing, or other document for a specific number of units or a specific period of time. A deviation differs from an engineering change in that an approved change requires a corresponding revision of the documentation defining the affected item, whereas a deviation does not contemplate revision of the applicable specification or drawing.

Designated Approval Authority (DAA): The official who has the authority to decide on accepting the security safeguards prescribed for an automated information system or the official who may be responsible for issuing an accreditation statement that records the decision to accept those safeguards.

Development Test and Evaluation (DT&E) - The test and evaluation that allows the Air Force to demonstrate that system engineering design and development is complete, design risks have been minimized, and the system performs as required and specified. DT&E include the test and evaluation of components, subsystems, hardware/software integration, associated software, and pre-production models of the systems.

Deviation: A noticeable or marked departure from the appropriate norm, plan, standard, procedure, or variable being reviewed.

DISA: Defense Information Systems Agency. A DoD agency responsible for managing the DoD information infrastructure.

Direct Costs: those costs clearly identified to a product or AIS and are totally related to the AIS, such as hands-on labor or material used in a product. First line supervision over a function in sole support of specific AIS is considered a direct cost. Similarly, second line supervision may also be considered a direct cost if solely in support of a specific AIS. Second line supervision and activities above second line that do not provide direct benefits to a specific AIS are considered indirect costs. Costs related to headquarters, regional offices, or support activities are not considered direct costs. [36].

Direct Metric: A metric that represents and defines a software quality factor and which is valid by definition, e.g. mean time to software failure for the reliability factor. [4].

Discovery: The activity of investigation that leads to an understanding of a system’s desired behavior and performance. [55].

Documentation: The concept of minimum documentation shall be evident. Where possible, stipulated plans, reports, and other data items shall be used to record the engineering outputs. The repository of this accumulated data shall be defined. Engineering data shall be the sole source of performance requirements used in the design and production of the system. Documentation may reside on electronic media.

Documented Procedure: A written description of a course of action to be taken to perform a given task.

Documentation Tailoring Category (Mandatory-M): At a minimum, the information in the document template must be included in the document. More information can be added at the project manager's discretion.

Documentation Tailoring Category (Optional-O): The information in the document template may or may not be included in the document. This decision is at the project manager's discretion.

Documentation Tailoring Category (Not applicable-NA): There is no need to include the information in the document.

Domain Model: The sea of classes in a system that serve to capture the vocabulary of the problem space; also known as a conceptual model. A domain model can often be expressed in a set of class diagrams whose purpose is to visualize all of the central classes responsible for the essential behavior of the system, together with a specification of the distribution of roles and responsibilities among such classes. [55].

Dump: A display of some aspect of a computer's execution states, usually the contents of memory, registers, etc., and is used as a diagnostic aid. Some examples are a postmortem dump (taken after a failure), and a snapshot dump (taken during execution). [12].

Dynamic Analysis: The process of evaluating a program based on its behavior during execution.[12] Includes Assertion Analysis, Coverage Analysis, Structural Coverage Analysis, Data Flow Coverage Analysis, Functional Coverage Analysis, Profiling, Timing Analysis, Test Bed Generation, Structural Test Data Generation, Functional Test Data Generation, Parameter Test Data Generation, Grammar-based Test Data Generation, Dynamic Graph Generation. [18].

Earned Value Management (EVM):

[image: image2.wmf]Task Name

Baseline Start

Baseline Finish

% Complete

Baseline Cost

BCWS

BCWP

Project ABC

Mon 3/10/97

Thu 5/8/97

13%

$8,560.00

$3,595.20

$1,112.80

Needs Analysis

Mon 3/10/97

Mon 3/10/97

100%

$80.00

$80.00

$80.00

Project Planning

Tue 3/11/97

Tue 3/11/97

100%

$160.00

$160.00

$160.00

Sys Reqs & Design

Wed 3/12/97

Fri 3/14/97

100%

$960.00

$960.00

$960.00

S/W Reqs

Mon 3/17/97

Thu 3/20/97

20%

$960.00

$960.00

$192.00

S/W Design

Fri 3/21/97

Thu 3/27/97

0%

$1,200.00

$1,200.00

$0.00

Code & Test

Fri 3/28/97

Fri 4/4/97

0%

$960.00

$902.40

$0.00

Function & System Test

Mon 4/7/97

Tue 4/15/97

0%

$1,120.00

$0.00

$0.00

Product Assurance

Wed 4/16/97

Fri 4/25/97

0%

$960.00

$0.00

$0.00

Customer Support

Mon 4/28/97

Thu 5/8/97

0%

$2,160.00

$0.00

$0.00

B,C

C

C

F

S

S

M

T

W

T

F

S

S

M

T

W

T

F

S

S

M

T

W

T

3/30/97

4/6/97

4/13/97

Relationship of Task Accomplishment, BCWS, & BCWP

Current day is 4 Apr 97

Note 1

: as your tasks are

completed

on time, you get

credit

 for it.

Note 3

: if you were supposed to start a

task

but

have not started

 it, your

BCWS

 will indicate

that % that you should’ve accomplished besides

not getting any

credit

 for it.

Note 2

: if you’ve started the

task

and were supposed to

finish

 it but

it is not yet finished your

BCWS

 will

show that and you will only be

credited

with the % that you’ve accomplished.

Earned Value Update Techniques: there are several techniques to report the accomplishment of work packages which are also known as BCWP calculation.

- 50 / 50 Technique: used when there are many, short tasks. The first 50% of budget are earned as BCWP as soon as work package is started. The last 50% of budget are earned as BCWP only when work package is completed. Short term: overstates completion status in first half of period of performance and understates completion in last half of period of performance. Long term: overall contract status is sufficiently represented by the net result of all the tasks.

- Percent Complete Technique: can be used for medium length tasks. The progress or performance is based on the manager’s judgment of how much of the task is complete. It reflects a percent of the BCWS. For example, if the manager estimates 60% of the cable have been installed based on total footage, then 60% of the BCWS is recorded as BCWP.

- Milestone Technique: Appropriate for longer-term discrete tasks. At least one measurable milestone should be planned in each reporting period. Budgets should be allocated according to the resource requirements to achieve these milestones, and therefore may be level or varied. BCWP is earned when each milestone is completed.

- Level of Effort Technique: should be used when there is a true level of effort task within a contract. Should be kept to a minimum because it does not really measure performance. Because BCWP always equals BCWS, there is never a Schedule Variance and performance measurement can be distorted.

Effective: Adequate to accomplish the intended purpose. [54].

Effective Process: A process that can be characterized as practiced, documented, enforced, trained, measured, and able to improve. (See also well defined process.)

Effort: The person-months or person-years of work by all job classifications on the software product (design, coding, inspection, testing, documentation, and supervision). [56].

Embedded Statement: A statement used within or as an argument to another or inserted between begin/end markers. [37].

End User: The individual or group who will use the system for its intended operational use when it is deployed in its environment. [30]. [14].

End User Representative: a selected sample of end users who represent the total population of end users. [54].

Engineering Change: In configuration management, an alteration in the configuration of a configuration item or other designated item after formal establishment of its configuration identification.

Engineering Change Proposal (ECP): In configuration management, a proposed engineering change and the documentation by which the change is described and suggested.

Engineering Management: The management of the engineering and technical effort to transform a conceptual requirement into an operational system. It includes the system performance parameters and preferred system configuration to satisfy the requirement, the planning and control of technical program tasks, integration of the engineering specialties, and the management of a totally integrated effort of design engineering, computer software engineering, test engineering, safety engineering, security engineering, logistics engineering, production engineering, and specialty engineering (EMC, environmental, etc.,) to meet cost, technical performance, and schedule objectives. Note: Engineering Management is sometimes identified by various institutions and organizations such as Program Management, Quality Management, Quality Plan, Quality System, Project Management, Quality Assurance, or any combination of the above terms. These are to be considered synonymous with the term Engineering Management.

Entity: A person, place, or thing about which there is a need to store data. Entities organize, classify, and track data. Entity names should be singular nouns or noun phrases. Entities equate to tables. An instance of an entity equates to a record (row in a table).

Entity-Relationship Diagram (ERD): A high-level data model, which shows entities, relationships and cardinality.

Evaluation: The process of determining whether an item or activity meets specified criteria. The use as reviews, inspections, and/or tests, to determine that a software product or service satisfies specified requirements. [54].

Error: (1) differences between computed, observed, or measured values and the true, specified, or theoretically correct value or conditions, (2) an incorrect step process or data definition; (3) an incorrect result, (4) a human action that produces an incorrect result. Distinguished by using “error” for (1) , “fault” for (2) “failure” for (3), and “mistake” for (4). See also failure, fault, and mistake. [37].

Error Source Location: The backward exploration of the cause of an error or defect from point of occurrence to ultimate reason. [56]. Also know as “Causal Analysis.

Estimate at Completion (EAC): Actual direct costs, plus indirect costs allocable to the contract, plus the estimate of costs (direct and indirect) for authorized work remaining. [49]. The latest revised estimate of the value of remaining work plus actual costs to‑date. EAC1 = BAC / CPI c This is a minimum estimate. EAC2 = ACWP + [(BAC - BCWPc) / (CPIc) (SPIc)]. This is an alternative method which factors in the schedule efficiency.

Estimate To Complete (ETC): That portion of the EAC that addresses total expected costs for all work remaining on the contract. [49].

Evaluation: The process of examining a system or system component to determine the extent to which specified properties are present. [11].

Event-driven Basis: a review that is performed based on the occurrence of an event within the project (e.g., a formal review or the completion of a life cycle stage). [54].

Evolution: A later phase of development, focused upon growing and changing the implementation through the successive refinement of the architecture, ultimately leading to deployment of the production system. [55].
Evolutionary: develops in builds, but differs from the incremental strategy in acknowledging that the user need is not fully understood and all requirements cannot be defined up front. In this strategy, user needs and system requirements are partially defined up front, then are refined in each succeeding build. [28].

Executable Statement: A statement that produces runtime actions or controls program flow. [37].

Execution History Report: This report shows how many times individual test cases have been run after they have been passed. This shows if test cases are being run needlessly. Identifies “spinning of the wheels”. [9].

Exit Criteria: A clear statement, in writing, that describes what conditions that the customer expects in order to validate (what can be seen or what can be done) that a problem has been corrected or a new requirement has been met. See acceptance criteria.

Extreme Programming: Extreme Programming (XP) is a discipline of business and software development that focuses both parties on common, reachable goals. XP teams produce quality software at a sustainable pace. The XP process has releases that take a few months, that divide into two-week iterations, and that divide into tasks that take a few days.

FAE: Functional Area Evaluator. Also called Quality Assurance Personnel (QAP). See QAP.

Failure: The inability of a system or component to perform its required functions within specified performance requirements. A failure may result when a fault is encountered. [12].

Fault: (1) A defect in a hardware device or component, and (2) an incorrect step in a process or data definition in a computer program. [37].

Findings: The conclusions of an assessment, evaluation, audit, or review that identify the most important issues, problems, or opportunities within the area of investigation. [54].

Firmware: The combination of hardware device and computer instructions and/or computer data that reside as read-only software on the hardware device.

First-Line Software Manager: A manager who has direct management responsibility (including providing technical direction and administering the personnel and salary functions) for the staffing and activities of a single organizational unit (e.g., a department or project team) of software engineers and other related staff. Also known as Project Manager or Software Project Manager.

First Normal Form: There is no more than one value for any attribute that is an instance of the entity.

Fixed Cost: A cost that remains constant regardless of the task duration or the work performed by a resource. [45].

Fixed-Price. A fixed-price contract means that for a specifically defined deliverable the customer will pay the estimated cost, no matter what the actual cost turns out to be. In this type of contract, it is critical that the specifications for, time table for delivery, and cost of the deliverable are well defined. It is not a contract that you would want to use when the technology or the processes are uncertain. Most previous fixed-price SLAs have been fixed-price on a per IT/NSS Requirements Document basis. [36].

Flexibility: The ability to be easily adapted to changing requirements. [28].

Foreign Key: A child entity's attribute, or set of attributes, that match the primary key of a parent entity.

Formal Qualification Review (FQR): The test, inspection, or analytical process by which a group of configuration items comprising a system is verified to have met specific contractual performance requirements.

Form: The defined configuration of an item including the geometrically measured configuration, density, and weight or other visual parameters that uniquely characterize an item, component, or assembly. For software, form denotes the language, language level, and media. An electronic file or hardcopy which captures information from the person filling it out, a form may be routed through a procedure and have multiple parts which entries from more than one person.

Formal Qualification Test (FQT): A process that allows the contracting agency to determine whether a configuration item complies with the allocated requirements for that item. Conducted of each CSCI on the target computer. [2]. Not referenced in the SEP.

Formal Review: A formal meeting at which a product is presented to the end user, customer, or other interested parties for comment and approval. It can also be a review of the management and technical activities and of the progress of the project. [14].

Formal Testing: The process of conducting testing activities and reporting results in accordance with an approved test plan, making provision for customer involvement.

Format Statement: A statement that provides information (data) for formatting or editing inputs or outputs. [37].

Function: A set of related actions, undertaken by individuals or tools that are specifically assigned or fitted for their roles, to accomplish a set purpose or end.

Function Point Analysis: Satisfies the “System Effort Estimate” [SW1PR006] and “Risk and Final Cost: [SW1PR007] components of the SEP Requirements Evaluation and Proposal Phase (SW1).

Function Point Count: A standard method for measuring software development and modifications from the customer’s point of view. A Function Point Count sizes software systems based on the common parameters of Inputs, Outputs, Inquiries, Internal Logical Files and External Interface Files. The functions of a software application are counted in place of the source lines of code.

Function Point Count (Application): A count that measures the current functions the application provides to the end-users. This count would be completed after the first installation of the software that is delivered when a new project is completed, or when an enhancement is made to an existing application.

Function Point Count (Enhancement Project): A count that measures the modifications to an existing application that add, change, or delete user functions delivered when the project is complete. This count will only include the modified portions of the application.

Function Point Count (System Baseline): A count that measures the current functions an application provides to the end-users. This count would be completed for a software project that has previously been delivered, but is being counted for the first time to establish an initial baseline count.

Function Point Estimate (New Development Project): A count that measures the functions that will be provided to the end-users. This estimate can be completed once the requirements have been baselined up until the first installation of the software that is delivered once the project is completed.

Function points: A measure of software size. Most appropriate for MIS applications. A product of five defined data components (inputs, outputs, inquires, files, external interfaces) and 14 weighted environment characteristics (data comm, performance, reusability, etc.). Example from ComputerWorld, March 8, 1993: A 1,000 line Cobol program would typically have about 10 function points, while a 1,000-line C program would have about eight. [12].

Functional Analyst: The person responsible for reviewing and analyzing the customer requirement. Each Project may have one or more. Functional Analysts support the Lead Analyst in creating the Requirements Specification (RS).

Functional Area: A distinct group of system performance requirements which, together with all other such groupings, forms the next lower-level breakdown of the system on the basis of function.

Functional Baseline (FBL): Exists between the time a requirement has been approved (IT/NSS Requirements Document or CCD) until the Allocated Baseline (ABL) is established. [20] see Allocated, Design, Test and Product Baseline. The initial, approved technical documentation for a configuration item. It prescribes all necessary functional characteristics, the tests required to demonstrate achievement of specified functional characteristics, the necessary interface characteristics with associated configuration items, the configuration items key functional characteristics and its key lower-level configuration items, if any, and design constraints, if they exist.

Functional Configuration Audit (FCA) - An audit conducted to verify: (1) that the development of a configuration item has been completed satisfactorily; (2) that the item has achieved the performance and functional characteristics specified in the functional or allocated configuration identification; and (3) that its operational and support documents are complete and satisfactory. Ensures that implementation satisfies requirements. [52] Done once per release.

Functional Requirement: A customer requirement documented in the IT/NSS Requirements Document or CCD.
Functional Review Board (FRB): A customer group of managers, requirements engineers, and users, of one or more similar systems, who review, validate, clarify, and prioritize functional requirements. This group also recommends the contents and sequence of block changes.

Functionality: The ability to perform all required functions.

General and Administrative (G&A) Expenses: Costs, which benefit all outputs, are. Costs that cannot be reasonably associated with any particular AIS and are allocated over all of the AIS. G & A costs generally include functions such as local comptroller, installation security, facilities engineering, legal services, fire protection, custodial services, refuse collection, snow removal, and similar types of base support functions. [36]

Goals: A summary of the key practices of a key process area that can be used to determine whether an organization or project has effectively implemented the key process area. The goals signify the scope, boundaries, and intent of each key process area.

Government-Furnished Equipment (GFE): Items in the possession of, or acquired by, the Government and delivered to, or otherwise made available, to the contractor.

Government Off-The-Shelf Software (GOTS): Software designed for a Government-specific need. Used by more than one office. Generally, the Government for uses in conjunction with outsourced software designs this software.

Group: The collection of departments, managers, and individuals who have responsibility for a set of tasks or activities. A group could vary from a single individual assigned part time, to several part-time individuals assigned from different departments, to several individuals dedicated full time. [14].

Hardware Configuration Item (HWCI): An aggregation of hardware that satisfies an end-use function and is designated for separate configuration management by the acquirer.

Hardware: External peripheral items related to computers such as monitors, central processing units (CPUs), keyboards, a mouse, mainframes, modems, etc. Computer software and technical documentation are excluded.

Host Computer: A computer used to develop software. (See target computer for contrast.)

Implementation Plan (IP): Documents the implementation and transition of the system (to include, but not limited to, delivery, installation, site preparation, training, schedule, resources, etc.).

Incremental Test Strategy: An overall testing strategy which consists of developmental tests, systems tests, and acceptance tests. Developmental tests include tests done at the unit level, the component level and the configuration item level and their integration. Tests are planned in the Software Development Plan (SDP) and documented via formal test reports. [20].

Independent verification and validation (IV&V): Verification and validation performed by an individual or organization that is technically, managerial, and financially independent of the development organization [5].

Indirect Costs: Those mission costs, which benefit two or more AISs, but not all AISs. Costs, which benefit all outputs, are general and administrative (G&A) expenses [36]. See G&A and direct costs.

Individual Development Plan (IDP): A corporate-level maintained effort tracking an individual's work-related abilities. Training and scholastic achievements are also maintained.

Information Assurance: Information operations that protect and defend information and information systems by ensuring their availability, integrity, authentication, confidentiality, and non-repudiation. This includes providing for restoration of information systems by incorporating protection, detection and reaction capabilities.
Information Technology/National Security System (IT/NSS) Requirements Document: Details a customer request for a change to functionality of existing or future software systems. AF Form 3215 or succeeding document. An “authorized IT/NSS Requirements Document is one that has been approved by the customer. The customer may or may not be the originator of the IT/NSS Requirements Document; it may originate with the provider or other AF Agency.

Initial Level: Level 1 as defined by the SEI-CMM: This software process is characterized as ad hoc and occasionally even chaotic. Few processes are defined, and success depends on individual effort.

Institutionalization: The building of infrastructure and corporate culture that support methods, practices, and procedures so that they are the ongoing way of doing business, even after those who originally defined them are gone.

Integrated Baseline Review (IBR): To evaluate the initial contract baseline or plan validity, accuracy and resource basis, thereby determining the realism of the plan at the earliest possible point. An IBR is a formal review conducted by the government program manager and technical staff following contract award to verify the technical content of the performance measurement baseline. An IBR will also be performed when work on a production option of a development contract begins or, at the discretion of the program manager, when a major modification to an existing contract significantly changes the existing PMB. When major events occur within the life of a program, e.g. PDR, CDR, etc., and a significant shift in the content or time-phasing of the PMB occurs, the PM may conduct a review of those areas affected by the change. SEPG Interpretation: in contrast may be the Baseline Audit.

Integrated Master Schedule (IMS): The Integrated Master Schedule (IMS) is derived from the Master Project Schedule (see definition for Master Project Schedule). The IMS provides SSG senior management the opportunity to review all SSG release schedules as a whole. Project Managers do not have to build an IMS, this is accomplished by SSG Metrics and Scheduling. SSG Metrics and Scheduling takes all the SSG Master Project Schedules and combines them to make up the IMS.

Integrated Software Management (ISM): The unification and integration of the software engineering and management activities into a coherent defined software process based on the organization's standard software process and related process assets. (See OPD) ISM evolves from SPP and SPTO at Level 2. This is a CMM Level 3 Key Process Area (KPA).

Integration Testing: See “Unit and Integration Testing”.

Integrity: The degree to which systems or components prevent unauthorized access to, or modification of, computer programs or data.

Interface Control Document (ICD): Specifies the requirements and detailed design for one or more interfaces between one or more CIs, systems, users, and other configuration items or critical items.

Interface Design Document (IDD): Specifies the detailed design for one or more interfaces between one or more CIs, systems, users, and other configuration items or critical items.

Interface Requirements Agreement (IRA): An agreement between two or more systems which interface with each other regarding the characteristics (data format, transmission media, security, etc.) of that interface. The IRA may contain complete information about external interface requirements and detailed designs, or it may refer to other documents such as ICDs, IRS, or IDDs which contain that information.

Interface Requirements Specification (IRS): Specifies the requirements for one or more interfaces between one or more CIs, systems, users, and other configuration items or critical items.

Interface Testing: Testing conducted to evaluate whether systems or components pass data and control correctly to one another. [12].

Intergroup Coordination (IC): To establish a means for the software engineering group to participate actively with the other engineering groups so the project is better able to satisfy the customer's needs effectively and efficiently. IC is the interdisciplinary aspect of ISM that extends beyond software engineering. This is a Level 3 SEI-CMM Key Process Area.

Interim plan: A set of task start and finish dates, and sometimes resource and cost information, that you can save at certain stages of your project. You can compare an interim plan with the baseline plan to monitor project progress or slippage. You can save up to five interim plans. [45].

Interface: The functional and physical characteristics required to exist at a common boundary. In development, a relationship among two or more entities (such as CI-CI, CI-HWCI, HWCI-HWCI, HWCI-User, CI-User, or software unit to software unit) in which the entities share, provide, or exchange data. An interface is not a CI, HWCI, software unit, or other system component; it is a relationship among them.

Interface Control: Interface control comprises the delineation of the procedures and documentation, both administrative and technical, contractually necessary for identification of functional and physical characteristics between two or more configuration items that are provided by different contractors/acquiring agencies, and the resolution of the problems.

Interface Control Document (ICD): Documents the system-level interface requirements and the methods to ensure the requirements are met; documents the identification and incorporation of software interface requirements, detailed design of internal and external interfaces, and agreement between owners of external interfaces.

Interface Control Working Group (ICWG): A technical group responsible for reporting interface problems, updating, releasing, and controlling ICDs and distributing such released ICDs, as required.

Interoperability: The ability of two or more systems to exchange information and to use the information that has been exchanged.

ISO (International Organization for Standardization) 9126: Information Technology/Software Evaluation - Quality Characteristics and Guidelines for their Use, 1991. ISO 9126 defines a set of six qualify characteristics (functionality, reliability, usability, efficiency, maintainability, and portability) and provides a framework for software quality assessments. ISO 9126 is a product of the ISO/International Electro-technical Committee/Joint Technical Committee No. 1 Subcommittee on Software Engineering (ISO/JTC1 SC7). [12].

Job Order Number (JON): A number determined by the functional analyst in order to allocate a breakdown of project charges for accounting purposes.

Joint Application Development (JAD): Sessions or meetings held between the software designers or developers and customers or users to determine functionality and screen layout of software.

Joint Management Reviews (JMR): Low-key review focusing on natural work products rather than viewgraphs or other specially prepared materials. These reviews include informal discussions of status, ideas, approaches, and risks. The idea of these reviews is ongoing communication between the acquirer and developer with minimum time wasted. The objective is to [28]:

1) Keep management informed about project status, directions being taken, technical agreements reached, and overall status of evolving software products.

2) Resolve issues that could not be resolved at JTR.

3) Arrive at agreed-upon mitigation strategies for near- and long-term risks that could not be resolved at JTRs.

4) Identify and resolve management-level issues and risks not raised at JTRs.

5) Obtain commitments needed for timely accomplishment of the project.

Joint Technical Architecture (JTA): Provides the "building codes" which, when implemented, permit the flow of information in support of the Warfighter. The JTA identifies a common set of mandatory information technology standards and guidelines to be used in all new and upgraded C4I acquisitions across DoD. The JTA standards are to be used for sending and receiving information (information transfer standards such as Internet Protocol suite), for understanding the information (information content and format standards such as data elements, or image interpretation standards) and for processing that information. The JTA also includes a common human-computer interface and "rules" for protecting the information (i.e., information system security standards). Future versions of the JTA will extend into other domains.
Joint Technical Reviews (JTR): Low-key review focusing on natural work products rather than viewgraphs or other specially prepared materials. The idea of these reviews is ongoing communication between the acquirer and developer with minimum time wasted. Project Leaders shall plan and take part in JTRs, which shall be attended by persons with technical knowledge of the software products to be reviewed. The reviews shall focus on in-process and final software products, rather than materials generated especially for the review. The reviews shall have the following objectives[28]:

1) Review evolving software products, using as criteria the software product evaluation criteria; review and demonstrate proposed technical solutions; provide insight and obtain feedback on the technical effort; surface and resolve technical issues.

2) Review project status; surface near- and long-term risks regarding technical, cost, and schedules issues.

3) Arrive at agreed-upon mitigation strategies for identified risks, within the authority of those present.

4) Identify risks and issues to be raised at JMRs.

5) Ensure on-going communications between Requester and developer technical personnel.

Key: An attribute, or set of attributes, whose value uniquely identifies an entity.

Key-Based Model: A mid-level data model with emphasis on the determination of keys and the elimination of many-to-many relationships.

Key Practices: The infrastructures and activities that contribute most to the effective implementation and institutionalization of a key process area.
Key Process Area (KPA): A cluster of related activities that, when performed collectively, achieve a set of goals considered to be important for establishing process capability. Ex: Peer Review, Software Configuration Management. [14]. A cluster of related activities that, when performed collectively, achieve a set of goals considered important for establishing process capability. The key process areas have been defined to reside at a single maturity level. They are the areas identified by the SEI to be the principal building blocks to help determine the software process capability of an organization and understand the improvements needed to advance to higher maturity levels. Levels 2 through 5, as defined by SEI-CMM, include the following KPAs: The Level 2 key process areas in the CMM are Requirements Management, Software Project Planning, Software Project Tracking and Oversight, Software Subcontract Management, Software Quality Assurance, and Software Configuration Management. The Level 3 key process areas in the CMM are Organization Process Focus, Organization Process Definition, Training Program, Integrated Software Management, Software Product Engineering, Intergroup Coordination, and Peer Reviews. The Level 4 key process areas are Quantitative Process Management and Software Quality Management. The Level 5 key process areas are Defect Prevention, Technology Change Management, and Process Change Management.

Labor Class: Functional job positions on a software development project. The following are associated with most software projects: Software management Level 1,2,3,Higher; Technical Analysts & Designers, System Engineer, Software engineer/analyst; Programmer; Test Personnel (CSCI-CSCI Integration), IV&V, Test & Evaluation Group (HW-SW); Software Quality Assurance (our SPAR); Configuration Management; Program Librarian; Database administrator; Documentation/publications; Training personnel; Support Staff. [41]. For further definitions refer to [41].

Latent Defect: Defects not resulting from the current requirement. For example: a defect introduced in a previous release but not found until a later release is considered a latent defect. See Defect.

Large Project: A simplistic estimation measure for determination of a project greater than 1,500 developer work hours.

Lead Analyst (LA): Responsible to the SPM for analyzing and refining customer requirements. Responsible for executing the “Identify and Analyze System/Software Requirements” procedure and creating the Requirements Specification (RS). Responsible for creating the test descriptions to the Test Document (TD). In conjunction with the Lead Designer, is responsible for creating the Interface Control Document (ICD). Each PROJECT must have one and only one LA. Same individual may be assigned to more than one PROJECT. May perform other roles on the PROJECT other than Lead Designer or Lead Programmer. Reports directly to the SPM. If the LA has functional knowledge, the LA may be also called the Lead Functional Analyst or Functional Analyst. If there is more than one Functional Analyst, a Lead must be designated. Traditionally, the Functional Analyst is viewed as the End User Representative on the PROJECT.

Lead Designer (LD): responsible to the SPM for executing the following procedures: “Develop Preliminary Design”; “Design Database”; and “Design Application”, and for creating the design document (DD). Each PROJECT must have one and only one. Same individual may be assigned to more than one PROJECT. May perform other roles on the PROJECT other than Lead Analyst.

Lead Programmer (LP): responsible to the SPM for creating one or many software modules/units. Each PROJECT must have at least one but if programming teams are how the PROJECT organizes themselves, each team must by lead by a Lead Programmer. Thus each PROJECT may have more than one Lead Programmer. Each Lead Programmer may be assigned to more than one PROJECT. May perform other roles on the PROJECT but should not be the SPAR.

Legacy Maintenance: Maintenance actions performed on legacy systems.

Legacy System: Existing automated information systems that have not been selected as DoD migration or target systems but that currently support the business processes within a functional activity.

Lessons Learned: Any experiences discovered on previous activities that can be used to expedite and/or improve future systems development.

Level-of-Effort. A level of effort contact means that for a specific amount of money the provider will produce as many deliverables as they can. There is no guarantee as to how many deliverables will be produced. Although funding is not specifically tied to each deliverable, as in a fixed-price contract, the deliverables still need to be well defined to facilitate accountability and customer reporting. [36].

Life-cycle: See Software Development Life-cycle. A generic term covering all phases of acquisition, operation, and logistics support of an item, beginning with concept definition and continuing through disposal of the item.

Line Of Code (LOC): See Source Line of Code

Logical Data Model (LDM): A mid-level data model with emphasis on the determination of keys and the elimination of many-to-many relationships.

Logic Source Statement: A single software instruction, having a defined beginning and ending independent of any relationship to the physical lines on which it is recorded or printed. Logical source statements are used to measure software size in ways that are independent of the physical formats in which the instructions appear. [37].

Maintainability: The ease with which a software system or component can be modified to correct faults, improve performance or other attributes, or adapt to changed environment. Also, the ease with which a hardware system or component can be retained in, or restored to, a state in which it can perform its required function.

Maintenance: Maintenance performed on a new or reengineered system that was designed and developed under the processes and procedures of the SSG SEP.

Major Review: A formal demonstration and confirmation across the system that supports or constitutes a program milestone event.

Managed and Controlled: The process of identifying and defining software work products that are not part of a baseline and, therefore, are not placed under configuration management but that must be controlled for the project to proceed in a disciplined manner. "Managed and Controlled" implies that the version of the work product in use at a given time (past or present) is known (i.e., version control), and changes are incorporated in a controlled manner (i.e., change control).

Managed Level: Level 4 as defined by the SEI-CMM: Detailed measures of the software process and product quality are collected. Both the software process and products are quantitatively understood and controlled.

Manager: A role that encompasses providing technical and administrative direction and control to individuals performing tasks or activities within the manager's area of responsibility. The traditional functions of a manager include planning, resourcing, organizing, directing, and controlling work within an area of responsibility.

Management Reserve: An adjustment (increase) of a size, cost, or schedule plan to account for likely underestimates of these parameters because of incomplete specification, inexperience in estimating the application domain, etc. A reserve amount that companies add to cost estimates and budgets to cover unanticipated expenses and act as a buffer against estimating errors. Normal contingency factors would be 35 percent added to cost estimates produced during requirements, 25 percent if produced during design, 15 percent if produced during coding, and 5 percent if produced during testing. [56].

Mandatory: See Documentation Tailoring Category or Process Tailoring Category as it pertains to each.

Master Project Schedule (MPS): Schedule for project activities that accommodates imposed milestone dates, critical dependency dates, and other constraints. Every AIS has a Master Project Schedule (MPS) which is a “roll-up” of their Release Schedules (see Release Schedule). Since the MPS is derived from the Release Schedule, Project Managers do not have to build a MPS because SSG Metrics and Scheduling takes care of this process. For example, if an AIS has several release schedules, the Master Project Schedule would be an accumulation of all the AIS’s release schedules. If an AIS only has one Release Schedule, then the MPS will be the same as that Release Schedule.

Materiel: A generic term covering systems, equipment, stores, supplies, and spares, including related documentation, manuals, computer hardware and software.

Maturity Level: A well-defined evolutionary plateau toward achieving a mature software process. The five maturity levels in the SEI's Capability Maturity Model are:

Level 1 / Initial - The software process is characterized as ad hoc and occasionally even chaotic. Few processes are defined, and success depends on individual effort.

Level 2 / Repeatable - Basic project management processes are established to track cost, schedule, and functionality. The necessary process discipline is in place to repeat earlier successes on projects with similar applications.

Level 3 / Defined - The software process for both management and engineering activities is documented, standardized, and integrated into a standard software process for the organization. All projects use an approved, tailored version of the organization's standard software process for developing and maintaining software.

Level 4 / Managed - Detailed measures of the software process and product quality are collected. Both the software process and products are quantitatively understood and controlled.

Level 5 / Optimizing - Continuous process improvement is enabled by quantitative feedback from the process and from piloting innovative ideas and technologies.

Method: A reasonably complete set of rules and criteria that establish a precise and repeatable way of performing a task and arriving at a desired result.

Methodology: A defined approach or process for doing software development or portions of software development. Methodologies can be either life cycle or phase. Life cycle refers to those methods that apply across the entire life of the software, from conception to death (i.e., the spiral software development method and the waterfall method). Phase refers to methods generally confined to a phase (or couple of phases) of the software life cycle, such as testing, requirements, and design methods (i.e., Structured Requirements Analysis, Object-oriented Design).

Measure: To ascertain or appraise by comparing to a standard; to apply a metric. [4].

Measurement: (1) The act of process of measuring. (2) A figure, extent, or amount obtained by measuring [4]. The dimension, capacity, quantity, or amount of something (e.g., 300 source lines of code or seven document pages of design).

Mechanism: A structure whereby objects collaborate to provide some behavior that satisfies a requirement of the problem; a mechanism is thus a design decision about how certain collections of objects cooperate. Mechanisms are a kind of pattern that represent the soul of a system’s design. [55].

Metric: Measures used to indicate progress or achievement.

A quantitative measure of the degree to which a system, component, or process possess a given attribute [5]. The following metrics are required by the Air Force [16, 18]:

1. Size: such as source lines of code.

2. Effort: Number of monthly staff hours, planned versus actual. A cost metric shall be developed which will provide insight into how well the cost of software development is controlled. The cost metric should address software development costs as well as the life-cycle cost impacts of the software development.

3. Schedule: work breakdown structure activity, start and completion dates, progress to date measured in deliverable. A schedule metric shall be developed which will indicate changes and adherence to the planned schedules for major system development milestones, activities and key software deliverables.

4. Software Quality: total number of errors opened and closed, number of errors opened and closed since last report.

5. Rework: number of opened and closed software change orders, number of damaged, repaired, and new SLOC.

6. Requirements Traceability: A requirements traceability metric shall be developed which will measure the adherence of the software products (including design and code) to their requirements at the system level. [16].

MIL-STD-498 takes a cautious step into this area by requiring the developer to define and apply software management indicators and provide a set of candidate management indicators to serve as a starting point. It is left up to the developer to propose in the Software Development Plan (SDP) the indicators to be used, the data to be collected, and the approach to interpreting the data, and the reporting approach. The acquirer can provide feedback on the proposed approach in reviewing the SDP. [25].

The CMM is mostly concerned with those measurements to determine the status of KPA activities. An example of which is for the Peer Review KPA 1) number of peer reviews performed compared to the plan; 2) number of work products reviewed compared to the plan; 3) overall effort expended on peer reviews compared to the plan. [14]

A measurement taken over time that communicates vital information about a process or activity. A metric should drive appropriate action and will be linked to the strategic planning process.[32]

There are several levels of Metrics: Corporate or those of interest at the corporate level. This includes the metrics above. Another level of metrics can be found at the Project level, or those important to the Project. [37].

Metric validation: The act or process of ensuring that a metric correctly predicts or assess a quality factor. [4].

Migration System: An existing AIS, or a planned and approved AIS, that has been officially designated to support standard processes for a functional activity. Migration systems can be applicable DoD-wide or DoD Component-wide.

Milestone: A scheduled event for which some individual is accountable and that is used to measure progress. [14]. “A milestone is the same thing as an event. Milestone could be almost anything: i.e., meetings, briefings, coding time, test time, release time, and all the milestone reviews.” [43]. Author’s opinion: at a minimum, the PSR, IRR, SRR, SDR, SSR, PDR, CDR, and the TRRs should be milestones. These signify the completion of SEP processes (ie: Needs Analysis, etc), and provides a logical place for a milestone and the measuring against achieving that milestone. See Program Management Review (PMR). “A reference point marking a major event in a project, used to monitor the project's progress. Any task with zero duration is displayed as a milestone.”[45] A scheduled event for which some individual is accountable and that is used to measure progress.

Mistake (software): Human action that was taken during software development or maintenance and that produced an incorrect result. A software defect is a manifestation of a mistake. Examples are (1) typographical or syntactical mistake (2) mistakes in the application of judgment, knowledge, or experience (3) mistakes made due to inadequacies of the development process. [37].

Model: (1) a representation (executable or not) of real things or events, (e.g. terrain, air, space, land, sea). (2) a physical, mathematical, or otherwise logical representation of a system, entity, phenomenon, or process. A group or combination of the models (e.g., synthetic environment). [41].

Module: a separately compilable entity. In C it is a file. [18] 1. A program unit that is discrete and identifiable with respect to other units. 2. A logically separable part of a program. This is comparable to a Software Unit and are used interchangeably. The terms “module”, “component” and “unit” are defined to be sub-elements of one another in different ways depending upon the context. The relationship of these terms is not yet standardized. [37]. “The architecture should define the major modules in a program (see SSG Design Document Template). In this case, the word “module” doesn’t mean routine. Building-block-level routines aren’t usually included in a top-level design. A module is a collection of routines that work together to perform a high-level function such as formatting output, interpreting commands, getting data from files, or accessing major data structures. Every feature listed in the requirements should be covered by at least one module. If a function is claimed by two or more modules, their claims should cooperate, not conflict.” [58] “The location in which macros are stored. Macros stored in modules in the global file are available from any project. Modules can be used to organize related macros.”[45]

Mutation Testing: A method whereby errors are purposely inserted into a program under test to verify that the test can detect the error. Also known as error seeding.[12] if set of test cases does not find errors for a particular mutant, then those test cases are not sensitive enough and need to be enhanced. If set of test cases find errors for a particular mutant, then that mutant is “killed” able to be found through existing test cases. Object is to make changes to the code that are likely errors that programmers (or designers) could make, for example, modify the direction of a relational operator, subtract instead of add. [18].

Networthiness: Describes the relative risks associated with fielding a networked system or application. A networthy system will not adversely impact the network and can be sustained from a Comm & Info perspective. The Certificate of Networthiness (CoN) is an approval to connect a system to Air Force Comm & Info infrastructures. A CoN is required prior to fielding of systems that use AF Comm & Info infrastructures. A system may require one or more CoNs, which is determined by system complexity and design on a case-by-case basis. See Certificate of Networthiness, Networthiness Assessment, Network Risk Assessment.

Networthiness Assessment: The evaluation of a system to determine the impact and risks of fielding the system at an installation. The result of the Networthiness Assessment is a Certificate of Networthiness Recommendation to the AF-CIO. The Networthiness Assessment evaluates: Infrastructure requirements, Network security, Network impact, Network Compatibility, JTA-AF Compliance, AF spectrum compliance, Comm & Info sustainability (manpower, training, logistics), Comm & Info (cost and schedule).

Network Risk Assessment (NetRA): A portion of the Networthiness Assessment. The NetRA evaluates the system in a lab environment to assess Network Security, Network Impacts and compatibility with the Comm & Info Infrastructure.

New Software Development: Involves the creation of new software that is unrelated to an existing package for any purpose other than that of interface connectivity.

New Start Development: See Tracks

Non-Developmental Item (NDI): Non-developmental item is a broad generic term that covers material available from a wide variety of sources with little or no developmental effort by the purchaser. NDIs include: Items obtained from a domestic or commercial marketplace; Items already developed and in use by users; Items already developed to other standards and in agreement with the purchaser. An item of software that is available for delivery and acceptance prior to award of the contract. [54].

Normalization: A process that places each attribute in an entity where it is dependent on the entire primary key of that entity, and on no other key. It is a method designed by Dr. E. F. Codd in 1972. It ensures that each attribute appropriately belongs to the entity to which it has been assigned, and it eliminates data insertion/deletion anomalies.

Not Applicable: See Documentation Tailoring Category or Process Tailoring Category as is pertains to each.

Nonconformity: The non-fulfillment of specified requirement [42].
Nondelivered Statements: Statements developed in support of the final product, but not delivered to the customer. [37].

Object: Something you can do things to. An object has state, behavior, and identity; the structure and behavior of similar objects are defined in their common class. See class. [55].

Offeror: A contractor who submits a proposal in response to a solicitation package. [54].

Office of Primary Responsibility (OPR): An office or individual designated by the customer as the central point of contact for a specific task, project, etc. The individual or organization responsible for accepting the product and authorizing payment to the developing organization.

Operational Architecture: A description (often graphical) of the operational elements, assigned tasks, and information flows required to accomplish or support the warfighting function. It defines the type of information, the frequency of exchange, and what tasks are supported by these information exchanges.[48] see Architecture, Technical Architecture or Systems Architecture.

Operational Effectiveness: The overall degree of mission accomplishment of a system used by representative personnel in the environment planned or expected (e.g., natural, electronic, threat) for operational employment of the system considering organization, doctrine, tactics, survivability, vulnerability and threat (including countermeasures, initial nuclear weapons effects, and nuclear, biological and chemical contamination threats). (AFI 99-102)
Operational Risk Management (ORM) - The systematic process of identifying hazards, assessing risk, analyzing risk control options and measures, making control decisions, implementing control decisions, accepting residual risks, and supervising and reviewing the activity for effectiveness of the implemented controls. The application of ORM in the acquisition and sustainment of systems and end-items includes System Safety. (AFPAM 90-902)

Operational Safety: The condition of having acceptable risk to life, health, property, or environment caused by a system or subsystem when employing that system or subsystem in an operational environment. This requires the identification of hazards, assessment of risk, determination of mitigating measures and acceptance of residual risk.
Operational Suitability: The degree to which a system can be placed satisfactorily in field use, with consideration given to availability, compatibility, transportability, interoperability, reliability, wartime use rates, maintainability, safety, human factors, architectural and infrastructure compliance, manpower supportability, logistics supportability, natural environmental effects and impacts, and documentation and training requirements. (AFI 99‑102)

OSS&E Baseline: Description of the operational safety, suitability, and effectiveness characteristics and limitations of any system or end-item that must be understood, acknowledged and maintained during operational deployment, use, experimentation, exercises, training, and maintenance of the system or end-item. The operational safety, suitability, and effectiveness baseline is established in development and updated as changes (threat, operational usage, aging, etc.) and improvements are made to the system or end-item. The operational safety, suitability, and effectiveness baseline may include the configuration baseline (specifications, drawings, and software code listings), Mission Need Statements, Operational Requirements Documents, Technical Orders, certifications, training, maintenance facilities, spare parts, threat scenarios, etc.
Operational test and evaluation (OT&E): The field test, under realistic conditions, of an item or component to determine effectiveness and suitability, and the evaluation of the results of the tests. [12]. SEPG Interpretations: same test characteristics as Beta test but done by AFOTEC.

Operator Manual (OM): Provides computer control personnel and computer operators in an information processing center with a detailed operational description of the system and its associated environment. Instructions for installation and operation.

Optimizing Level: Level 5 as defined by the SEI-CMM: Continuous process improvement is enabled by quantitative feedback from the process and from piloting innovative ideas and technologies.

Optional: See Documentation Tailoring Category or Process Tailoring Category as it pertains to each.

Organization: A unit within a company or other entity within which many projects are managed as a whole. All projects within an organization share a common top-level manager and common policies. [30]. Is distinguished from the Project or Program. Project and Program is used interchangeably. A company, corporation, firm or enterprise, whether incorporated or not, public or private. [42]. Here at the SSG we consider the organization to be SSG. A unit within a company or other entity (e.g., government agency or branch of service) within which many projects are managed as a whole. All projects within an organization share a common top-level manager and common policies

Organic Resources: A resource member of the government.
Organization Process Focus (OPF): To establish the organizational responsibility for software process activities that improve the organization's overall software process capability. The primary result of the OPF activities is a set of software process assets (see OPD) that are used by the software project (See ISM). This is a Level 3 SEI-CMM Key Process Area.

Orientation: An overview or introduction to a topic for those overseeing or interfacing with the individuals responsible for performing in the topic area. (See train for contrast.)

Peer: Someone, besides the principal work product author, who is trained, experienced, and knowledgeable in the work product being reviewed.

Peer Reviews (PR): A Peer (work) review is conducted to perform an in-depth analysis of any products (documents, plans, letters, code, test cases, etc.) developed during each of the systems engineering processes. This review should surface defects but does not necessarily correct them. A Peer Review will be conducted on all major work products within 40-60% complete. This is a Level 3 SEI-CMM Key Process Area.

Percent Complete: BCWP(cum) / Budget at Completion.

Percent Spent: ACWP(cum) / Budget at Completion.

Performance: A quantitative measure characterizing a physical or functional attribute relating to the execution of a mission/operation or function.

Performance Measurement Baseline (PMB): The time-phased budget plan against which contract performance is measured. It is formed by the budgets assigned to scheduled cost accounts and the applicable indirect budgets. For future effort, not planned to the cost account level, the performance measurement baseline also includes budgets assigned to higher level CWBS elements, and undistributed budgets. It equals the total allocated budget less management reserve. [49]. Also known as the Project Management Baseline (PMBL).

Periodic Review/Activity: A review or activity that occurs at specified, regular time intervals (as opposed to event-driven)

Physical Configuration Audit (PCA) - An audit conducted to verify that a configuration item, as built, conforms to the technical documentation that defines it. [52] Ensures that documentation reflects the software functionality. The “to-be-delivered” software is the same software that was shown to satisfy the requirements. [53]. Done once per release. An audit conducted to verify that a configuration item, as built, conforms to the technical documentation that defines it.

Physical Data Model (PDM): A model of data that represents the structure of the data as implemented in the physical database. This will reflect denormalization implemented to enhance performance and data element properties as required, such as field lengths, and storage types, and whether nulls are allowed. The PDM may also not show foreign keys. The PDM may also contain the program access name for each data element as well as the display name.

Planning Package: A logical aggregation of work within a control account, normally the far-term effort, that can be identified and budgeted in early baseline planning, but is not yet defined into work packages. [49]. See work package and control account. Planning Packages are required to be defined into work packages before the end of phase review. For example, at the CDR, the Construction Phase work packages must be defined.

Policy: A guiding principle, typically established by senior management, which is adopted by an organization or project to influence and determine decisions. [30].

Preliminary Cost Estimate (PCE): Initial rough estimate of resource requirements and schedule. This cost estimate will be updated after a complete requirement analysis/definition has been completed. Initial rough estimate of resource requirements and schedule. This cost estimate will be updated after a complete requirement analysis/definition has been completed.

Preliminary Design Review (PDR) - A review conducted: (1) to evaluate the progress, technical adequacy, and risk resolution of the selected design approach for one or more configuration items; (2) to determine each design's compatibility with the requirements for the configuration item; (3) to evaluate the degree of definition and assess the technical risk associated with the selected manufacturing methods and processes; to establish the existence and compatibility of the physical and functional interfaces among the configuration items and other items of equipment, facilities, software and personnel; and, as applicable, (4) to evaluate the preliminary operational and support documents. A scheduled review with the customer intended to determine the accuracy of the software designed prior to actual coding. In the SEPV4, it is combined with the System Requirements Review (SRR) and the Software Specification Review (SSR).

Prime Contractor: An individual, a partnership, a corporation, or an association that administers a subcontract to design, develop, and/or manufacture one or more products. [14].
Problem Report: A document or set of documents (electronic or hard copy) used to recognize, record, track, and close problems. (Sometimes referred to as trouble reports, discrepancy reports, anomaly reports, etc.) [37].

Problem (Software): A human encounter with software that causes a difficulty, doubt, or uncertainty with the use of or examination of the software. Examples include: (1) a difficulty encountered with a software product or software work product resulting from an apparent failure, misuse, misunderstanding, or inadequacy (2) a perception that the software product or software work product is not behaving or responding according to specification (3) an observation that the software product or software work product is lacking function or capability needed to complete a task or work effort. [37].

Procedure: A written description of a course of action to be taken to perform a given task [30]. See Class.

Process: A sequence of steps performed for a given purpose, for example, the software development process [5]. A sequence of steps performed for a given purpose; for example, the software development process. [[59]]

 Process Capability: The range of expected results that can be achieved by following a process. (See process performance for contrast.)

Process Capability Baseline: A documented characterization of the range of expected results that would normally be achieved by following a specific process under typical circumstances. A process capability baseline is typically established at an organizational level (see process performance baseline for contrast). [54].

Process Change Request (PCR): Submitted at the project level with the intention of improving a documented process. Forwarded to corporate for approval for incorporation if approved at the project level.

Process Database: See organization's software process database.

Process Description: The operational definition of the major components of a process. Documentation that specifies, in a complete, precise, verifiable manner, the requirements, design, behavior, or other characteristics of a process. It may also include the procedures for determining whether these provisions have been satisfied. Process descriptions may be found at the task, project, or organizational level.

Process Development: The act of defining and describing a process. It may include planning, architecture, design, implementation, and validation.

Process Measurement: The set of definitions, methods, and activities used to take measurements of a process and its resulting products for the purpose of characterizing and understanding the process.

Process Owner: The Process Owner is the individual responsible for a specific process and its procedural steps. It is this person's responsibility to determine the feasibility of an update or a process improvement.

Process Performance: A measure of the actual results achieved by following a process. (See process capability for contrast.)

Process Performance Baseline: A documented characterization of the actual results achieved by following a process, which is used as a benchmark for comparing actual process performance against expected process performance. A process performance baseline is typically established at the project level, although the initial process performance baseline will usually be derived from the process capability baseline. (See process capability baseline for contrast.)

Process Requirement: The specification of a requirement for a particular project and/or organizational processes. Similar to functional requirements, but process related. Can be used as a framework for tailoring organizational standard processes and procedures.

Process Tailoring: The activity of creating a process description by elaborating, adapting, and/or completing the details of process elements or other incomplete specifications of a process. Specific business needs for a project will usually be addressed during process tailoring.

Process Tailoring Category (Mandatory): Item can be tailored up, not down; must be waived by SSG/ED.

Process Tailoring Category (Optional): Item can be tailored out at project manager's discretion; waiver not needed; must be documented.

Process Tailoring Category (Not applicable): Item does not need completion for the category of project.

Product: The result of activities or processes. [42]. (See software product and software work product.). A product is a given set of items. The set could comprise system, subsystem, hardware, or software items and their documentation.

Product Baseline: an allocated baseline, which has passed systems and acceptance testing and is in use or operation. [20]. Established by verifying the product specifications. This is determined at the TRR.

Product Configuration Identification (PCI): The current approved or conditionally approved technical documentation which defines the configuration of a CI during the production, operation, maintenance, and logistic support phases of its Life Cycle, and which prescribes (a) all necessary physical or form, fit and function characteristics of a CI, (b) the selected functional characteristics for production acceptance testing, and (c) the production acceptance tests.

Productivity: the measure of the amount of source code that can be delivered per person-month. [56].

Profile: A comparison, usually in graphical form, of plans or projections versus actuals, typically over time.
Profiling: a dynamic test that provides a trace of the flow of control during software execution. [18].

Program: A program may have one or many projects associated with it. A project may have one or more releases. A release may have one or more IT/NSS Requirements Documents. An IT/NSS Requirements Document may have one or more functional requirements. A functional requirement may have one and only one IT/NSS Requirements Document. An IT/NSS Requirements Document may have one and only one project. A project may have one and only one program. Here at the SSG it is used synonymously with project and Computer Software Unit (CSU).

Program Access Name: The name by which a data element is known inside the application. This may differ from the data element name in the database due to differing length restrictions.

Program Control: Program control consists of several different roles including cost-estimating, scheduling, and workload resource management. These duties are performed for any project needing assistance and may be short-term or long-term assignments. A cost estimator develops estimates for product size, effort, and costs and participates in project planning for software-related efforts. Scheduling includes preparing a project schedule and reporting any schedule related risks. Workload resource management involves managing current and projected workload and reporting any related risks.

Program Management Review (PMR): PMRs are performed on development and sustainment projects or programs about once a year and on acquisition projects or programs semi-annually.

PMRs are also performed on projects or programs “in trouble”. Author’s opinion: While there is no criteria for determining when projects or programs are in trouble, a good rule of thumb that the Project Manager can use is: a project or program is in trouble when 1) actual costs exceed planned costs by 15%; or when 2) milestones slip from baselined planned milestones by 120 days. Milestones can be those management reviews which occur at the end of each process in the Systems Engineering Process (SEP), such as the Critical Design Review (CDR).
Program Manager: Responsible for managing and directing one or many PROJECTs. Each PROJECT may have one Program Manager.

Here at the SSG used synonymously as Project Manager, ADS Manager and AIS Manager. See Project Manager.

Program-sensitive Fault: A fault that occurs when a particular sequence of instructions is executed. [12].

Programmer: supports the lead programmer. Each PROJECT may have one or many. Each Programmer may be assigned to more than one PROJECT. May perform other roles on the PROJECT with the exception of Lead Analyst and should not be the SPAR.

Project: An undertaking requiring concerted effort that focuses on developing and/or maintaining a specific product that satisfies a stated user need. The product may include hardware, software, and other components. Typically a project has its own funding, cost accounting, and delivery or release schedule. Every project requires at least one project code provided by SSG Financial Management and Comptroller. A project can have one or more releases.

PROJECT Configuration Manager (CM): responsible to the PROJECT Manager for executing all applicable SEP Configuration Management procedures for the PROJECT. May perform any other PROJECT system engineering roles, but should not participate as a member of the PSDT nor SPAR.

Project Management Baseline (PMBL): a baseline of the Project Plan including all the Release Schedules.

Project Manager: The role with total business responsibility for an entire project. The project manager is the individual ultimately responsible to the customer . A Project Manager may have one or many Senior Managers (see Senior Manager). For projects associated with software development or sustainment, the individual who directs, controls, administers, and regulates a software project. The Software Project Manager is the lead person charged directly with designing, developing, maintaining, and modifying software. This person coordinates (and may supervise) the activities of individual software specialists or work teams to plan, produce, test, and field the application software, database, and operational instructions for an assigned workload. Each project must have one and only one. This position is also known as the Software Project Manager. Also: the generic term used to identify an individual responsible for the execution of a designated portion of an acquisition program (i.e., software development, installation, etc.) [36].

Project Roles: those individuals who have a role in the project. They include: the Project Manager; Software Project Manager; the Software Quality (Process) Assurance Representative (SPAR); the Lead Engineer; the Lead Analyst; the Lead Designer; the Lead Programmer; the Test Director the Lead Functional Analyst; as well as the analysts, designers, and programmers.
Project Security Manager (SM): responsible to the PROJECT Manager for all security work products and procedures. May perform other PROJECT roles. Most likely is not part of the PSDT.

Project Software Development Lead (PSDL): The PSDL is responsible for the PSDT whose job it is to develop or maintain software code. This individual typically is involved in software project planning and oversight activities. Duties also include those duties performed by developers. The PSDL has direct report responsibility to the project manager. May be assigned other project roles.

Project Software Development Team (PSDT): The team who develops and maintains software code on one or more software projects.

Project Team: Any individual associated with a specific project. This definition can include the customer and end user of a system, and contractors.

Project's Defined Software Process: The operational definition of the software process used by a project. The project's defined software process is a well-characterized and understood software process, described in terms of software standards, procedures, tools, and methods. Tailoring the organization's standard software process to fit the specific characteristics of the project develops it. (See also organization's standard software process, effective process, and well-defined process.)

Proposal: Documents the technical approach, cost estimate, risks, resources, and schedule for each requirements document or DR.

Proposal Manager: The proposal manager is responsible for the determination of, and the documentation associated with, the technical approach, cost estimate, risks, resources, and schedules for each requirements document or DR. This individual is from the Requirements Management Office (RMO) when the Proposal Team consists of multiple members.

Proposal Team: A group of people, or in some cases an individual, determined from the corporate who are tasked with defining a technical solution, developing a cost estimate, a high-level schedule, and determining the risk of a potential project.

Prototype: Software prototyping is the creation of a "small" version of the software to be developed for user display purposes related to the abilities of the actual software. This activity can occur in any of the three types of projects (reengineering, maintenance, or new software development).

Purchaser: The recipient of a product provided by the supplier in a contractual situation. [42].

Qualification Operational Test and Evaluation (QOT&E): Test and evaluation conducted by the Air Force Operational Test and Evaluation Center (AFOTEC) to ensure that only operationally effective and suitable systems are delivered to the operating forces and to ensure that new systems meet user requirements and operate within operational and maintenance concepts. AFOTEC testing is normally done for new systems only. Requires a Test and Evaluation Master Plan (TEMP).

Qualification Test and Evaluation (QT&E): Systematic application of selected testing techniques to computer programs, documents, and output products, prior to release for worldwide implementation or prototyping. It ensures system operability, conformance with standards, and compatibility between programs and documentation and the environment in which they must operate.

Qualification Test and Evaluation, Phase I (QT&E-I): Formal testing of computer software and reviewing of documentation by an independent test group in a "lab" environment before operational release. Testing includes the interaction of multiple software systems residing on a single or multiple hardware platform. Testing should check the system integration (software and documentation), measure the impact on operations, ensure computer programs and documentation comply with standards, and certify if the system is ready to be released into an operational environment. A systems test.

Qualification Test and Evaluation, Phase II (QT&E-II): Formal testing in a "live" environment at one or more selected Air Force operational sites before release for operational use.
Quality: The totality of characteristics of an entity that bear on its ability to satisfy stated and implied needs. [42]. (1) The degree to which a system, component, or process meets specified requirements. (2) The degree to which a system, component, or process meets customer or user needs or expectations. [[59]]. The totality of features and characteristics of a product that bears on its ability to satisfy given needs. [56].

Quality Analysis: A static test that test the quality characteristics such as complexity and compliance with standards, code maintainability, and portability. [18].

Quality Assurance: A planned and systematic use of metrics to provide adequate confidence that an item or product conforms to established requirements.[12]. All the planned and systematic activities implemented within the quality system, and demonstrated as needed, to provide adequate confidence that an entity will fulfill requirements for quality. [42]. A planned and systematic pattern of all actions necessary to provide adequate confidence that management and technical planning and controls are adequate to establish correct technical requirements for design and development; manage and design activity standards, drawings, specifications, or other documents referenced on drawings, lists, or technical documents. Quality Assurance encompasses the entire organization. (See Software Quality Assurance for comparison.)

Quality Assurance Personnel (QAP): must have one for PROJECT’s that use contractors. Each QAE may be assigned to more than one PROJECT. Reports directly to the PM.

Quality Assurance Report (QAR): The written results, as seen from SSG Services, elaborating on the findings of an audit. A QAR can also be written regarding any observed project processes or behavior. Can reflect positive or negative results.

Quality Control: The operational techniques and activities that are used to fulfill requirements for quality. [42].

Quality Management: All activities of the overall management function that determine the quality policy, objectives and responsibilities and implement them by means such as quality planning, quality control, quality assurance and quality improvement, within the quality system. [42].

Quantitative Control: Any quantitative or statistically-based technique appropriate to analyze a software process, identify special causes of variations in the performance of the software process, and bring the performance of the software process within well-defined limits.

Quantitative Process Management (QPM): To control the process performance of the software project quantitatively. The focus is on identifying special causes of variation with a measurably stable process and correcting, as appropriate, the circumstances that drove the transient variation to occur. QPM adds a comprehensive measurement program to the practices of OPD, ISM, IC, and PR. This is a SEI-CMM Level 4 Key Process Area

Rapid Application Development (RAD): has always been associated with prototyping, which has been used by programmers since the 1960s to help define user requirements and to verify that the programmer has understood the functions to be performed by the application. Early prototypes, (the SEPG calls Conceptual Prototypes) were simply screen paintings without function. The programmer would explain to the user how the screens would be sequenced and how the application would respond to input; the user had to use his/her imagination. After the prototype was approved, the programmer would throw it away and begin to program the application “for real”. Since the prototypes were “mock-ups” from both the programmer and the user point of view, they were imprecise approximations. In the 1980s, the term RAD became associated with 4GLs, and particularly those products that could generate compiled code. With these products, the programmer could rapidly create a functional, working prototype (the SEPG calls Operational Prototypes) that gave a better picture of the final application than the mock-ups of the previous generation. Unlike their predecessors, these prototypes could be compiled into code that executed at acceptable levels of performance. The prototype was progressively refined with incremental processing detail until it finally became the complete application. During the process, it became possible for end users to inspect and approve application components as they were developed. See the SSG Software Engineering Guide for a full understanding of Conceptual Prototypes and Operational Prototypes.

Reengineering: The process of examining and altering an existing system to reconstitute it in a new form. May include reverse engineering (analyzing a system and producing a representation at a higher level of abstraction, such as design from code), restructuring (transforming a system from one representation to another at the same level of abstraction), forward engineering (using software products derived from an existing system, together with new requirements, to produce a new system), translation (transforming source code from one language to another or from one version of a language to another), or new interface design (linking one existing system to another new or existing system).

Regression Testing: Selective retesting of a system or component to verify that modifications have not caused unintended effects and that the system or component still complies with its specified requirements [5]. (An excellent opportunity to gain the benefits of automation, since regression tests will hopefully be run after any change in the program, no matter how apparently insignificant or uninvolved the change. Murphy’s Laws run rampant in these situations.)[12] Ideally test cases are automated and accessed through a data base so they can be re-run easily--one should be able to re-run cases that test part of a unit, component, and/or the entire system. [18].

Relationship: An association between entities. Relationship names should be verbs or verb phrases. Avoid overly simplistic names such as "is" or "has."

Release: A CM action whereby a particular version of software is made available for a specific purpose. [2] A process whereby the final computer program, or change to computer program, and associated documentation are distributed to using activities. [36]. For DoD contractors, a software build is an aggregate of one or more computer software configuration items that results in the satisfaction of a specific set or subset of requirements based on development of software A build is a separately tested and delivered product. Build-level functions are those that are performed for each release of a software product to the customer. On federal government contracts using, a customer release corresponds to a build. [41]. Each Release will have its own Release Schedule. For CMM purposes the release should be considered the product. And that to differentiate releases, those releases which result from a requirements document/s, should be the product, versus a release as a result of fixing a problem perhaps resulting from a DR. See IT/NSS Requirements Document or DR. Note: the relationship of the terms “build” and “version” is up to the developer; for example, it may take several versions to reach a build, a build may be released in several parallel versions (such as to different sites), or the terms may be used as synonyms. [53]. A configuration management action whereby a particular version of software is made available for a specific purpose. A Release may have one or more requirements documents.

Release Schedule: A list of work products associated with an AIS’s release and the activities required to produce those products in a release. The Project Manager uses the Release Schedule to plan the start and finish dates of their release and to allocate resources for the development of products. The Release Schedule provides a means of evaluating the progress of the release.

Reliability: The ability to perform with correct, consistent result [23]. There are four metrics used to assess software reliability [57]:

1. Probability of failure on demand: this is a measure of the likelihood that the system will behave in an unexpected way when some demand is made on it (i.e., safety-critical and “non-stop” systems.

2. Rate of fault occurrence (ROCOF): the measure of the frequency of occurrence with which unexpected behavior is likely to be observed. This is the most generally useful reliability metric (i.e., 2/100 means two faults in 100 time units).

3. Mean Time To Failure (MTTF): a measure of the time between observed failures. Not very useful for software, more appropriate for hardware.

4. Availability: measure of how likely the system is to be available for use, normally expressed in time units. Most appropriate for systems where the repair or restart time is significant and the loss of service during that time is important (i.e., telecommunications, 998/1000).

Repeatable Level: Level 2 as defined by the SEI-CMM: Basic project management processes are established to track cost, schedule, and functionality. The necessary process discipline is in place to repeat earlier successes on projects with similar applications.

Replanning: The redistribution of the budget for future work. Traceability is required to previous baselines and attention to funding requirements needs to be considered in any replanning effort. [49].

Request For Proposals (RFP): Solicitation document used by the government to procure goods and services.

Required Training: Training designated by an organization to be required to perform a specific role. Also see Desired Training.

Requirement: there are many definitions of requirements. (1) A condition or capability that must be met by software needed by a user to solve a problem or achieve an objective. [5] (2) A characteristic that a system or configuration item (CI) must posses in order to be acceptable to the acquirer. (3) A mandatory statement in this standard or another portion of the contract. [28]. What the acquirer cares enough about to make conditions for acceptance [24]. (Versus design: which is a set of decisions made by the developer in response to the stated requirements.--may be what or how. [24]. IT/NSS Requirements Documents, DRs, Trouble Reports or Form 9s only document all requirements, which need to be addressed by software. All new requirements for all new or existing C4 systems will be documented by an IT/NSS Requirements Document. [38].

All requirements will be documented by three methods: 1) IT/NSS Requirements Document or other requirements document; 2) DR, or 3) Trouble Report. A requirement may have other “Management Documents” associated with it, such as the Program Management Directives (PMD), Operational Requirements Document (ORD), Program Management Requirements Responsibility Transfer (PMRT), Statement or Work (SOW), Mission Needs Statement (MNS). Each provides additional information about the requirement. Requirements (IT/NSS Requirements Document) are classified as either Category I, II, or III. Category II and III requirements must go before the Requirements Processing Working Group (RPWG) or the IT/NSS Requirements Board (CSRB) [33]

(1) A characteristic that a system, HWCI or CI must possess in order to be acceptable to the acquirer; (2) a mandatory statement in a standard or another portion of the contract. Characteristics that identify the accomplishment levels needed to achieve specific objectives for a given set of conditions.

A requirement evolves from a customer Approved Requirements (C4RD) to a Functional Requirement (OCD) to an Allocated Requirement (RS) into the application software unit. The Requirements Traceability Matrix (RTM) tracks the “requirement” throughout its life cycle.

A program may have one or more projects. A project may have one or more releases. A release may have one or more IT/NSS Requirements Document. An IT/NSS Requirements Document may have one or more functional requirements. A functional requirement may have one and only one IT/NSS Requirements Document. An IT/NSS Requirements Document may have one and only one project. A project may have one and only one program.

Requirement Contractor: the contractor responsible to deliver the completed system, product, or task to the government. (email from SSG/PK on 28 August 1997.

Requirement Management (RM): The process of establishing a common understanding of baseline requirements between a customer and a project team and controlling the evolution and satisfaction of those requirements over the project's life. This agreement is the basis for planning and managing a project. The software plans, products, and activities are kept consistent with these allocated requirements. This is a Level 2 SEI-CMM Key Process Area.

Requirement Traceability: Ability to follow the life of a requirement, in both forwards and backward direction, i.e., from its origins (an IT/NSS Requirements Document), through its development and specifications, to its subsequent deployment and use, and through periods of ongoing refinement and iteration in any of these phases. [23]. Requirement traceability is used to capture the relationships between requirements, design, and implementation of a system. All system components (hardware, software, humanware, manuals, policies, and procedures) created at various stages of the development process are linked to requirements. [24].

Requirements Growth: The increase between baselined and current documented requirements. [56]. Also known as “requirements creep.” Can be caused by a customer expanding the original functional requirements or after the development team has a clearer understanding of the original functional requirements—both will impact the schedule. [56]
Requirements Traceability Matrix (RTM): Primary mechanism to trace the decomposition, allocation, and achievement of requirements through development and into test. Created in Dynamic Object-Oriented Requirements System (DOORS).
Reusability: Ability to be used in multiple applications. [28].

Review: A planned activity during which a work product (strategy, budgets, requirements, design, code, test, support, training, etc.) is reviewed by the author and others involved in an attempt to gain an objective, varied, and complete perspective of the product. Commonly referred to as design review, code review, technical review, walk-through, inspection, peer reviews, etc. Walk-throughs are generally less formal and led by the author, while inspections are more formal and led by a more independent party. [12]. Reviews can be either technical or management driven-Joint Technical Reviews and Joint Management Reviews. [28].

Revision: A version that supersedes an earlier version, typically, to correct errors as opposed to a version that is an alternative version.

Rework: A result of correcting defects or changing customer requirements after the allocated baseline (ABL) is achieved. Should not be included into testing level of effort. [18]. Before “rework” can begin, a product must be completed by meeting the exit criteria as stated in the SEP. Software Rework includes analysis and rework of all appropriate software products, including documentation, to (1) fix defects when discovered during any software development activity or (2) make the necessary software changes whenever the customer changes existing requirements or adds new ones. Rework may require changes only to the code, in which case only recoding and re-testing will be necessary. However, changes to the design or to the detailed software requirements may be required, in which case re-design and rework of the associated design and requirements documentation will also be necessary. [41].

Risk: A factor, course, or element involving possible danger of hazard. Possibility of suffering loss. Uncertainty of achieving expectations. [54]. The probability that a software project will experience potential hazards that will affect the schedule or completion of the project. [56].

Risk Management: An approach to problem analysis that weighs risk in a situation by using risk probabilities to give a more accurate understanding of the risks involved. Risk management includes risk identification, analysis, prioritization, and control. The process associated with identifying, evaluating, mitigating, and controlling project risks. [54].

Risk Management Plan (RMP): The collection of plans that describe the risk management activities to be performed on a project. Identification of known risks and corresponding mitigation strategies for a specific project. Periodic updates of risks are also to be maintained in the plan.

Robust Quality: Taguchi writes about robust quality in [10]. This is a characteristic of a product that enables it to more than meet minimum requirements. Customers really expect more than just minimum requirements, and although “satisfied” with minimum requirements, will look elsewhere next time if not “delighted” by the product. This is more a function of product design than design process. [12].

Robustness: The degree to which a system or component can still function in the presence of partial failures or other adverse, invalid, or abnormal conditions. [12]

Role: A unit of defined responsibilities that may be assumed by one or more individuals. The face that an object or a class presents to the world. The same object may play different roles at different times and thus logically present a different face each time. Collectively, the roles of an object form the object’s protocol. [55].

Scenario: (1) Description of an exercise (initial condition in military terms). It is part of the session database, which configures the units and platforms and places them in specific locations with specific missions. (2) An initial set of conditions and time lines for significant events imposed on trainees or systems to achieve exercise objectives. [41]. An instance of a use case that signifies a single path through that use case. A primary scenario represents some fundamental system function; secondary scenarios represents some fundamental system functionality; secondary scenarios represent variations on the theme of a primary scenario, often reflecting exceptional conditions. A scenario is an instance of a use case, and thus represents a single path through that use case. For example, “book a shipment of tennis shoes from Hong Kong for delivery to Long Beach on the ship H.M.S. Bilgewater and then on to Chicago by rail starting next Friday is one scenario of the use case of “book a shipment”. See Use Case. [55].

Scenario Diagram: A diagram that is used to show the dynamics of scenarios and mechanisms, both involving the collaboration of several classes or objects. A scenario diagram highlights a flow of events and messages over time. Scenario diagrams include object message diagrams (which focus on messages dispatched among collaborating objects) and message trace diagrams (which focus on the flow of messages over time). [55].
Schedule: A list of tasks and activities, describing the past and/or future accomplishments of a project/release, used to allocate work, specify deadlines, and manage the project/release.
Schedule Performance Index (SPI): Is a measure of schedule performance efficiency - “What is the relationship between the value (planned cost) of the work we accomplished and what it actually cost to do the work?” (SPI = BCWP / BCWS)
Schedule Variance XE "Schedule variance:General" (BCWP - BCWS): The amount (value) of planned work that was accomplished ahead of the planned date (positive schedule variance), or the amount of planned work that was scheduled to be accomplished but was not (negative schedule variance). "By how much did the work we actually accomplished vary from the work we planned to accomplish?" Negative is unfavorable.

Schedule Variance Percentage (SV%): Schedule Variance / BCWS Negative is unfavorable

Second Normal Form: First normal form with the added condition that each non-key attribute's value is determined by an entity's entire key, not just part of it.

Section: Section shall be interpreted as meaning the top paragraph and all its subparagraphs

Segment: A collection of one or more CIs most conveniently managed as a unit. Segments are generally defined to keep related CIs together so that functionality may be easily included or excluded in a variant.

Segmentation: A process performed by software developers to convert/create their application to a format that is capable of being installed by the COE Installer and executed in the COE runtime environment. Refer to the DII COE Segmentation Guide.

Semantic Error: An error resulting from a misunderstanding of the relationship of symbols or groups of symbols to their meanings in a given language. [12].

Senior Manager: A management role at a high enough level in an organization that the primary focus is the long-term vitality of the organization, rather than short-term project and contractual concerns and pressures. In general, a senior manager for engineering would have responsibility for multiple projects. [14]. This could be anyone above the Project Manager. For the SEP: Senior Manager: A management role at a high enough level in an organization that the primary focus is the long-term vitality of the organization, rather than short-term PROJECT and contractual concerns and pressures. Anyone in the PROJECT MANAGER’s chain of command could be considered a Senior Manager. Each PROJECT must have one or many senior managers. Senior management must periodically review (oversee) their PROJECTs.

Sensitivity Analysis: In safety analysis, analysis that assesses the potential impact of a potentially critical failure on the ability of the system to perform its mission. [11].

Service Area: A "service area" in JTA terminology is not more than an arbitrary grouping of services and functionality provided in an information system. For the purposes of a technical architecture, all services have been allocated to a given service area in a way that is consistent with the way that the standards bodies are addressing the definition of industry standards. (Email from Mauro Ferdman, ESC 10Feb97. See JTA.

Service Level Agreement (SLA): The “pre-work” contract between the SSG and a paying customer. [35]. Every SLA may have several IT/NSS Requirements Documents. Each SLA covers one year and must be renewed each year. Documents agreements between the SPOs and external organizations.

Significant Variances: Those differences between planned and actual performance, which require further review, analysis, or action. [49].

Simulation: (1) A model that behaves or operates like a given system when provided a set of controlled inputs. (2) The process of developing or using a model as in (1). (3) An element of a special kind of model that represents at least some key internal elements of a system and describes how those elements interact over time. [41].

Simulation Entity: An element of the synthetic environment that is created and controlled by a simulation application. It is possible that a simulation application may be controlling more than one simulation entity. [41]

Simulator: (1) A special case of virtual simulation that provides an encapsulated virtual environment for interfacing with the simulation system. (2) A device, computer program, or system that performs simulations. (3) For training a device, which duplicates the essential features of a task simulation and provides for direct practice. (4) A physical model or simulation or a weapon system, set of weapon systems, or a piece of equipment which represent some major aspects of the equipment's operation. [41].

Single Manager: The single individual specifically designated, under the integrated weapon system management architecture, to be responsible for the life cycle management of a system or end-item. The single manager is the program manager vested with full authority, responsibility, and resources to execute and support an approved Air Force program.
Size: Delivered, executable SLOCs. Comment statements or blank lines are excluded from the size. [56]. Also can use Function Points to describe size.

Slack: The amount of time a task can slip before it affects another task's dates or the project finish date. Slack is sometimes referred to as float time. Free slack is the amount of time a task can slip before it delays another task. Total slack is the amount of time a task can slip before it delays the project finish date. When the total slack is negative, the duration for a task is too long for its successor to begin on the date required by its constraint. [45].

Slippage: The amount of time a task has been delayed from its original baseline plan. The slippage is the difference between the scheduled start or finish date for a task and the baseline start or finish date. Slippage can occur when a baseline plan is set, and the actual dates subsequently entered for tasks are later than the baseline dates or the actual durations are longer than the baseline durations. [45].

Software: Intellectual creation comprising the programs, procedures, rules and any associated documentation pertaining to the operation of a data processing system. [42]. Computer programs and computer databases. Note: Although some definitions of software include documentation, it is now limited to the definition of computer programs and computer databases.

Software Acquisition Plans: The collection of plans, both formal and informal, used to express how software acquisition activities will be performed, for example, the Software Acquisition Risk Management Plan or Project Management Plan.

Software Acquisition Process Group: Is responsible for the definition, improvement, and maintenance of the acquisition organization’s standard software acquisition process and related process assets, including guidelines for all projects to tailor the standard software acquisition process to their specific situations. It coordinates process activities with the software projects and related elements of the organization. [54].

Software Acquisition-related Group: A collection of individuals (both managers and technical staff) representing a software discipline that supports, but is not directly responsible for, software acquisition. Examples of software disciplines include software configuration management and software quality assurance. [54].

Software Baseline Audit: An examination of the structure, contents, and facilities of the software baseline library to verify that baselines conform to the documentation that describes the baselines

Software Baseline Library: The contents of a repository for storing configuration items and the associated records.

Software Build: An operational version of a software system or component that incorporates a specified subset of the capabilities the final software system or component will provide. [[59]].

Software Capability Evaluation (SCE): An appraisal by a trained team of professionals to identify contractors who are qualified to perform the software work or to monitor the state of the software process used on an existing software effort.[14]. An appraisal by a trained team of professionals to identify contractors who are qualified to perform the software work or to monitor the state of the software process used on an existing software effort.

Software Configuration Control Board (SCCB): This board also determines the actual "block" software changes from recommendations/preferences provided from the customer's FRB. Also known as the CCB.

Software Configuration Management (SCM): SCM comprises individuals who perform the functions of configuration identification, configuration control, configuration status accounting, and configuration audits. SCM is at a corporate level as well as a project level. In some instances, the corporate SCM disperses the team to the various projects to accomplish the daily SCM activities. All SCM members follow the same processes and procedures.

Software Configuration Management Plan (SCMP): Documents the plan for performing configuration management activities for a specific project or group of projects including resources, schedule, tools, and procedures.

Software Contract Management (SCM): To select qualified subcontractors and manage them effectively. It combines the concerns of RM, SPP, and SPTO for basic management control, along with necessary coordination of SQA and SCM. This is a Level 2 SEI-CMM Key Process Area.

Software Contract Management Plan (SCMP): Documents the plan for selecting qualified software subcontractors and managing them effectively.

Software Cost Estimator: The software cost estimator is responsible for determining the cost and schedule of a block release. All software cost estimators follow the same processes and procedures. SSG Cost Analysis performs the software cost estimator's role at the corporate level; at the project level, the role is performed by the PSDL.

Software Development: new development, modification, reuse, reengineering, maintenance, and all other activities resulting in software products. [28]. Describes the plans for conducting a software development effort, including, but not limited to, identification of processes, methods, and approach to be used/followed to develop the effort and the management approach to manage the effort and captures the schedules and organization and resources associated with the project. Note: The SDP (a.k.a., Project Plan) includes the above within the basic plan; however, the following plans or documents exist as attachments to the SDP: Master Schedule, Software Configuration Plan, Software Quality Assurance Plan, Test Document, Project Estimates, Implementation Plan, and Risk Management Plan).

Software Development File (SDF): A repository for material pertinent to the development of a particular body of software. Contents typically include (either directly or by reference) considerations, rationale, and constraints related to requirement analysis, design, and implementation; developer internal test information; and schedule and status information. [28].

Software Development Folder (SDF): A "block" repository for material pertinent to the development of a particular group of software development units (UDF). Contents typically include all UDFs contained in a "block" of tested units. They can include (either directly or by reference) considerations, rationale, and constraints related to test information; and schedule and status information.

Software Development Library (SDL): A controlled collection of software, documentation, other intermediate and final software products, and associated tools and procedures used to facilitate the orderly development and subsequent support of software.

Software Development Life Cycle: A development methodology. See Software Engineering Guide.

Software Development Plan (SDP): The collection of plans that describe the activities to be performed for the software project. It governs the management of the activities performed by the software development and engineering group for a software project. It is not limited to the scope of any particular planning standard. [30]. Industry standards recommend that an SDP is defined by a set of deliverables that are defined in no more than two week chunks of time. [14]. The collection of plans that describe the activities to be performed for the software project. It governs the management of the activities performed by the software engineering group for a software project. It is not limited to the scope of any particular planning standard, such as IEEE-STD-1058 that may use similar terminology. The SDP is a living document for the life of the project. Requirements and changes to the requirements for each block are captured in updates to the SDP, Block Release Plan, and attachments.

Software Engineering Group: The collection of individuals (both managers and technical staff) who have responsibility for performing the software development and maintenance activities (i.e. requirement analysis, design, code, and test) for a project. Groups performing software-related work, such as the software quality assurance (SQA) group, the software configuration management (SCM) group, and the software engineering process group (SEPG), are not included in the software engineering group. [14], [30].

Software Engineering Process Group (SEPG): A group of specialists who facilitate the definition, maintenance, and improvement of the software process used by the organization. In the key practices, this group is generically referred to as “the group responsible for the organization’s software process activities.” [30].

Software Implementation: Converting software design into computer programs and computer databases. [28].

Software Integration: A process of putting together selected software components to provide the set or specified sub-set of the capabilities the final software system will provide.

Software Inspection: A rigorous, formal, detailed technical peer review of the software design or implementation (code). [40]. Activities such as measuring, examining, testing, gauging one or more characteristics of a product or service and comparing these with specified requirements to determine conformity. [42].

Software Lifecycle: The period of time that begins when a software product is conceived and ends when the software is no longer available for use. [14]. The period of time that begins when a software product is conceived and ends when the software is no longer available for use. The software life cycle typically includes a concept phase, requirements phase, design phase, implementation phase, test phase, installation and checkout phase, operation and maintenance phase, and, sometimes, retirement phase. [[59]].

Software Plans: The collection of plans, both formal and informal, used to express how software development or maintenance activities will be performed. Examples of plans that could be included: software development plan, software quality assurance plan, software configuration management plan, software test plan, risk management plan, and process improvement plan. [14].

Software Process: A set of activities, methods, practices, and transformations that people use to develop and maintain software and the associated products (e.g., project plans, design documents, code, test cases, and user manuals).

Software Process Assessment (SPA): An appraisal by a trained team of software professionals to determine the state of an organization’s current software process, to determine the high-priority software process-related issues facing an organization, and to obtain the organizational support for software process improvement. [14].

Software Process (Quality) Assurance Representative (SPAR): Responsible to the PM for executing all applicable SEP SPAR procedures for the PROJECT and as Peer Review Facilitator for major project work products. Each PROJECT must have one or many SPARs. May perform any other PROJECT system engineering roles, such as QAE, but should not participate as a member of the PSDT nor SPAR.

Software Process Assets: See organization's software process assets.

Software Process Capability: See process capability.

Software Process Description: The operational definition of a major software process component identified in the projects defined software process or the organization's standard software process. It documents, in a complete, precise, verifiable manner, the requirements, design, behavior, or other characteristics of a software process. (See also process description.)

Software Process Improvement Plan: A plan, derived from the recommendations of a software process assessment, that identifies the specific actions that will be taken to improve the software process and outlines the plans for implementing those actions. Sometimes referred to as an action plan.

Software Process Maturity: The extent to which a specific process is explicitly defined, managed, measured, and controlled and is effective. Maturity implies a potential for growth in capability and indicates both the richness of an organization's software process and the consistency with which it is applied in projects throughout the organization.

Software Product: The complete set, or any of the individual items of the set, of computer programs, procedures, and associated documentation and data designated for delivery to a customer or end user. [5]. (See software work product for contrast). Complete set of computer programs, procedures and associated documentation and data designated. [42].

Software Project: An undertaking requiring concerted effort, which is focused on analyzing, specifying, designing, developing, testing, or maintaining the software components and associated documentation of a system. A software project may be part of a project building a hardware or software system.

Software Project Engineering (SPE): To perform a well-defined engineering process consistently that integrates all the software engineering activities to produce correct, consistent software products effectively and efficiently. SPE describes the technical activities of the project, e.g., requirement analysis, design, code, and test. This is a Level 3 SEI-CMM Key Process Area.

Software Project Manager (SPM): Responsible to the PM for managing and directing one or many PROJECTs requiring organic software development or sustainment and creating and updating of the Software Development Plan (SDP). Duties also include those duties performed by developers. Must have one and only one for each PROJECT which organically develops or sustains software. May perform other roles on the PROJECT including the PROJECT Manager. This term is synonymous with Project Software Development Lead and possibly Automated Information System (AIS) Lead. See Project Manager.

Software Project Planning (SPP): To establish reasonable plans for performing the software engineering and for managing the software project. The plans are the necessary foundation for managing the software project (See SPTO). This is a Level 2 SEI-CMM Key Process Area.

Software Project Planning Tracking and Oversight (SPTO): To establish adequate visibility into actual progress so that management can take effective actions when the software project's performance deviates significantly from software plans. This is a Level 2 SEI-CMM Key Process Area.

Software Quality Assurance (SQA): (1) a planned and systematic pattern of all actions necessary to provide adequate confidence that a software work product conforms to established technical requirements. (2) A set of activities designed to evaluate the process by which software work products are developed or maintained. SQA provides management with appropriate visibility into the process being used by the software project of the products being built. SQA involves reviewing and auditing not only the software products but the software work products and activities to verify that they comply with the applicable procedures and standards and providing the software project and other appropriate managers with the results of the reviews and audits. [27]. The Software Quality Assurance team comprises individuals who perform independent SQA process and product evaluations. SQA is defined at both a project level and a corporate level. All SQA members follow the same processes and procedures. Their purpose is to provide management with appropriate visibility into the process being used by the software project and of the products being built.

Software Quality Engineering (SQE): SEPG Interpretation: It acknowledges the merging of the two engineering disciplines of software quality assurance and testing during the development or implementation phase.

Software Quality Factors: Examples include quantitative requirements regarding CSCI functionality, reliability, maintainability, availability, flexibility, portability, reusability, testability, usability, and other attributes. [28].

Software Requirement: A condition or capability that must be met by software needed by a user to solve a problem or achieve an objective. [5], [IEEE-STD- 610].

Software Support: The process of modifying a software system or component after delivery to correct faults, improve performance or other attributes, or adapt to a changed environment. [[59]].

Software System: A system consisting solely of software and possibly the computer equipment on which the software operates.
Software-Related Group: A collection of individuals (both managers and technical staff) representing a software engineering discipline that supports, but is not directly responsible for, software development or maintenance. Examples of software engineering disciplines include software quality assurance and software configuration management.

Software Rework: See Rework.

Software Unit: (1) A separately compilable entity, although not always; (2) a software component that is not subdivided into other components. [30]. When a series of units have been tested, they are integrated together and tested as a group or component. Units are tested using a white box or black box techniques. Each code unit undergoes Peer Review and is Unit Tested before the unit is considered complete. Unit Test Readiness criteria are established. [18]. An element in the design of a CI; for example, a major subdivision of a CI, a component of that subdivision, a class, object, module, function, routine, or database. Software units may occur at different levels of a hierarchy and may consist of other software units. Software units in the design may or may not have a one-to-one relationship with the code and data entities (routines, procedures, databases, data files, etc.) that implement them or with the computer files containing those entities. [28]. An Ada library, the most common are the subprogram and the package. [31]. A software unit is an element in the design of a CI; for example, a major subdivision of a CI, a component of that subdivision, a class, object, module, function, routine, or database. Software units may occur at different levels of a hierarchy and may consist of other software units. Software units in the design may or may not have a one-to-one relationship with the code and data entities (routines, procedures, databases, data files, etc.) that implement them or with the computer files containing those entities. A database may be treated as a CI or as a software unit. The DD may refer to the software units by any name consistent with the design methodology being used. The following figure depicts the relationships:

[image: image3.wmf]SYSTEM

(SSS)

CSC

SYSTEM

(SSS)

SYSTEM

(SSS)

CSCI

(SRS)

HWCI

HWCI

(PIDS)

IRS

HWCI

HWCI

HWCI

(CIDS)

HWCI

(PIDS)

CSCI

(SRS)

IRS

CSCI

(SRS)

IRS

HWCI

CSC

CSC

CSC

CSC

CSC

CSC

CSC

CSU

CSC

CSU

CSU

CSU

CSU

CSU

CSU

CSU

CSU

CSU

CSC

CSC

CSU

CSU

CSU

CSU

CSU

CSU

CSU

CSU

CSC

CSC

CSC

NON-DEVELOPMENTAL SOFTWARE

SAME CSU USED BY DIFFERENT CSCs

Basic Unit for Testing in OO Systems: There is nearly universal agreement that the class is the natural unit for test case design. Methods are meaningless apart from their class. Other units for testing are aggregation of classes: class clusters and application systems. The intended use of a class implies different test requirements, e.g. application-specific vs. general-purpose classes, abstract classes, and parameterized (template) classes. Testing a class instance (an object) can verify a class in isolation. However, when verified classes are used to create objects in an application system, the entire system must be tested as a whole before it can be considered to be verified. [Robert Binder, Testing Object-Oriented Systems: A Status Report, 34].

To see how Software Units are tracked in our earned value approach, refer to PDLX007, Work Breakdown Structure Lexicon.

Software Work Product: Any artifact created as part of defining, maintaining, or using a software process, including process descriptions, plans, procedures, computer programs, and associated documentation, which may or may not be intended for delivery to a customer or end user. [27]. (See Software Product for contrast.)

Solicitation Package: When seeking suppliers for a particular acquisition, it is the information distributed which tells the interested bidders what the requirements are, how to prepare their proposals, how proposals will be evaluated, and when to submit their proposals. Sometimes called Request for Proposals (RFP). [54].

Source Lines Of Code: An explicit definition of what to include and what to exclude when counting SLOC can be found in a Technical Report produced by the Software Engineering Institute (SEI) Park, Robert, E. et al. Software Size Measurement: A Framework for Counting Source Statements (CMU/SEI-92-TR-20). Pittsburgh, Pa: Software Engineering Institute, Carnegie Mellon University, and September 1992. This reference can be found in the SEPG Process Asset Library. The definition that Hewlett-Packard used was: NCSS or non-commented source statements, which include compiler directives, data declarations, and executable code. Each physical line of code in counted once. Each include file is counted once. Print statements are lines of code. Comment lines are lines containing only comments. A commented executable line is counted as executable code, not as a comment. Blank lines are not counted as comment lines. [50]. A physical line (non-comment, non-blank) of deliverable source statements. [56].

Source Statements: Instructions or other textual symbols, either written by people or intended to be read by people, that direct the compilation or operation of a computer-based system. [37].

Special Cause (of a defect): A cause of a defect that is specific to some transient circumstance and not an inherent part of a process. Special causes provide random variation (noise) in process performance. (See common cause for contrast.)

Specification: A document intended primarily for use in procurement, which describes the essential technical requirements for items, materials, or services including the procedures for determining whether or not the requirements have been met.

Specification Change Notice (SCN): A document used in configuration management to propose, transmit, and record changes to a specification.

Spiral Development: This is a methodology for software development that is used when the requirements have not been completely defined. This type of development is used particularly when the customer is uncertain of all requirements needed. In this methodology, there are intervals where the requirements are defined and then the software is developed around the requirements. Once that is created, the user can determine if the software suits all needs, and the software is reworked accordingly. This is an ongoing requirement process.

Staff Hour: An hour of time expended by a member of the staff. [IEEE P1045/D5.0] & [37].

Stage: A partition of the software effort that is of a manageable size and that represents a meaningful and measurable set of related tasks performed by the project. A stage is usually considered a subdivision of a software life cycle and is often ended with a formal review (or other well-defined criteria) prior to the onset of the following stage. [30].

Standard: Mandatory requirements employed and enforced to prescribe a disciplined uniform approach to software development.
Standard Rate (FY04): Equals the cost per direct labor hour. This rate is adjusted annual at the beginning of each FY. [36].

Standard System: A "standard system" is a migration system within an IM functional area that has completed the transition to DoD-wide standard technical environment (defined by the DoD technical architecture and the Technical Reference Model) and standard data definitions. [34].

Standards Conformance Analysis: A static test used to check the conformance to a set of standards. [18].

State Machine Diagram: A diagram that is used to show the dynamics of individual classes, in terms of the events that impact them, the actions they give out in response, and the states that they may be found in over their lifetimes. [55].

Statement Delimiter: A symbol or set of rules that identifies when a statement begins or ends. [39].

Statement Of Objectives (SOO): A document primarily for use in procurement, which specifies the work requirements for a project or program in a general type of framework (similar to the more specific task oriented SOW). It is used in conjunction with specifications and standards as a basis for a contract. That portion of a contract, which establishes a broad description of the government's required performance objectives. (Definition from Defense Systems Management College Glossary of Defense Acquisition Acronyms & Terms seventh edition, October 1996.)
Statement Of Work (SOW): A document primarily for use in procurement, which specifies the work requirements for a project or program. It is used in conjunction with specifications and standards as a basis for a contract. The SOW will be used to determine whether the contractor meets stated performance requirements. That portion of a contract, which establishes and defines all non specification requirements for contractor efforts either directly or with the use of specific cited documents. (Definition from Defense Systems Management College Glossary of Defense Acquisition Acronyms & Terms seventh edition, October 1996.)

Statement Testing: Testing designed to execute each statement of a computer program. See test coverage. [12].

Status Accounting: See Configuration Status Accounting.

Statement Type: An attribute that classifies source statements and source lines of code by the principal functions that they perform. [37].

Static Analysis: The process of evaluating a system or component based on its form, structure, content, or documentation. [5]. Static pertains to events or processes that occur without computer program execution. Cannot replace dynamic analysis and includes Complexity Analysis, Data Flow Analysis, Control Flow Analysis, Information Flow Analysis, Standards Conformance Analysis, Quality Analysis, Cross-Reference Analysis, Browsing, Symbolic Evaluation, Specification Compliance Analysis, and Pretty Printing. [18].

Stress Testing: Testing conducted to evaluate a system or component near, at or beyond the limits of its specified requirements. [12]. Any kind of testing carried on with a simultaneously active source of transactions. Testing with high background loads, to the point where one, more, or all the resources are simultaneously saturated. [28].

Structural Testing: Includes Loop Testing, Basis Path Testing, and Using Cyclomatic Complexity to prioritize testing and obtaining meaningful coverage information. [18].

Subcontract: A contract between two contractors, usually a prime and a subcontractor.
Subcontract Manager: A manager in the prime contractor's organization who has direct responsibility for administering and managing one or more subcontracts.
Subcontractor: An individual, partnership, corporation, or association that contracts with an organization (i.e., the prime contractor) to design, develop, or manufacture one of more products. [14]. The organization that provides a product to the supplier. [42]. An individual, partnership, corporation, or an association that contracts with an organization (i.e., the prime contractor) to design, develop, or manufacture one or more products.
Subject Matter Expert (SME): An SME is an individual with a specific area of expertise. These individuals are consulted when a determination is needed in their area of proficiency.

Subproject: A project used in another project, where it is represented as a single task. You can use subprojects to break projects into manageable units and to reduce memory usage. [45].

Subsystem Specifications (SSS): The logical breakdown of a system into separate areas of responsibility, such as functions, where each breakdown is composed of a software unit or series of units. It should be as detailed as possible concerning the environment and design elements in order to provide maximum guidance to the software design effort. It is bundled into the Requirements Specification (RS).

Subtask: A task that is part of a summary task. The subtask information is consolidated into the summary task. You can designate subtasks using the Microsoft Project outlining feature. [45].

Summary Task: A task that is made up of subtasks and that also summarizes those subtasks. You can use the Microsoft Project outlining feature to create summary tasks. Microsoft Project automatically determines summary task information (duration, cost, and so on) using information from the subtasks. [45].

Support Contractor: Is hired to work along side us as we are in charge of delivering the product or service to the customer, they use what we use--the SEP. (Email from SSG/PK 28 August 1997.)

Support Managers: Support managers are considered SMEs in their specific fields. A lead person fills this function. They may be matrixed from the corporate office for a specific project. Support managers usually include SQA Representative, Project SCM , and the independent test lead. These terms are under revision.

Sustainment Development: See Tracks
System: A collection of components organized to accomplish a specific function or set of functions. A single DSD.

System Architecture (SA): A description, including graphics, of systems* and interconnections** providing for or supporting warfighting functions (C4SR ITF Integrated Architecture Panel, 18 December 1995). The SA defines the physical connection, location, and identification of the key nodes, circuits, networks, warfighting platforms, etc., and specifies system and component performance parameters. It is constructed to satisfy Operational Architecture requirements per standards defined in the Technical Architecture. The SA shows how multiple systems within a subject area link and interoperate, and may describe the internal construction or operations of particular systems within the architecture. (C4 Chiefs Consensus SA Definition, 12 January 1996, as modified at the suggestion of the USD(A&T) community.) [48]. See Architecture, Operational Architecture or Technical Architecture.

System Elements: A system element is a balanced solution to a functional requirement or a set of functional requirements and must satisfy the performance requirements of the associated item. A system element is part of the system (hardware, software, facilities, personnel, data, material, services, and techniques) which, individually or in combination, satisfies a function (task) the system must perform.

System Program Directorate (SPD) Director: The SPD director is responsible for one or more related management information systems. The SPD director performs designated tasks related to resource management, engineering or technical management, and program management. Using standard processes, tools, and metrics, the SPD Director is responsible for (1) working with the customer and software support activity to determine requirements, set priorities, plan schedules, and acquire necessary resources; (2) establishing block releases, budgets, schedules, and working arrangements required to meet customer requirements; (3) preparing the system-level program plans; (4) tracking program schedules to completion and conducting periodic reviews with the software support activity and respective customers; (5) co-chairing the project-level SCCB with the designated corporate customer representative; (6) establishing a control system for monitoring system performance and costs; and (7) proposing changes that will maintain approved functionality while reducing costs over time.

Systems Program Office (SPO): See SPD. Aka Information Systems Program Office (ISPO).

System Requirement: A condition or capability that must be met or possessed by a system or system component to satisfy a condition or capability needed by a user to solve a problem. [[59]]. A system requirement follows a Functional Requirement and precedes an Allocated Requirement. It is documented in the Requirement Specification (RS).

System Requirements Allocated to Software: The subset of the system requirements that are to be implemented in the software components of the system. The allocated requirements are a primary input to the software development plan. Software requirement analysis elaborates and refines the allocated requirements and results in software requirements that are documented. [54].

System Requirements Review (SRR): The objective of this review is to ascertain the adequacy of the contractor's efforts in defining system requirements. It will be conducted when a significant portion of the system functional requirements has been established.

Systems Engineering Management Process: A logical sequence of activities and decisions transforming an operational need into a description of system performance parameters and a preferred system configuration.

Systems Engineering Management Process Group: A group of specialists who facilitate the definition, maintenance, and improvement of the systems engineering process used by the organization. In the key practices, this group is generically referred to as "the group responsible for the organization's systems and software engineering process activities."

Systems Security Engineering: An element of system engineering that applies scientific and engineering principles to identify security vulnerabilities and minimize or contain risks associated with these vulnerabilities. It uses mathematical, physical, and related scientific disciplines and principles and methods of engineering design and analysis to specify, predict, and evaluate the vulnerability of the system to security threats.

Systems Specification: A system-level requirement specification. A system specification may be a system or subsystem specification, prime item development specification, or a critical item specification.

Systems Engineering Group: The collection of departments, managers, and staff who have responsibility for specifying the system requirements, allocating the system requirements to the hardware and software components, specifying the interfaces between the hardware and software components, and monitoring the design and development of these components to ensure conformance with their specifications. [30].

Systems Engineering Process (SEP): See PDLX008, Graphic Portrayal.

System/Subsystem Specifications (SSS): Provides a detailed definition of the System/Subsystem functions. It documents details of the on-going analysis between the user's operational personnel and the appropriate development personnel. It defines in detail the interfaces with other systems and subsystems and the facilities to be used for accomplishing the interfaces.

Tailor: To modify a process, standard, or procedure to better match process or product requirements.

Task: A job that has a beginning and an ending. The completion of a task is important to the project's completion. Projects are made up of tasks. [45] (1) A sequence of instructions treated as a basic unit of work. [IEEE-STD- 610] (2) A well-defined unit of work in the software process that provides management with a visible checkpoint into the status of the project. Tasks have readiness criteria (preconditions) and completion criteria (post-conditions). (See activity for contrast.)

Task Leader: The leader of a technical team for a specific task, who has technical responsibility and provides technical direction to the staff working on the task.

Team: A collection of people, often drawn from diverse but related groups, assigned to perform a well-defined function for an organization or a project. Team members may be part-time participants of the team and have other primary responsibilities.
Technical (Formal) Reviews: A series of system engineering activities by which the technical progress on a project is assessed relative to its technical or contractual requirements. The formal reviews are conducted at logical transition points in the development effort to identify and correct problems resulting from the work completed thus far before the problem can disrupt or delay the technical progress. The reviews provide a method for the contractor and procuring activity to determine that the development of a CI and its identification have met contract requirements. See discussion on design reviews for more information.

Technical Architecture (TA): A minimal set of rules governing the arrangement, interaction, and interdependence of the parts or elements whose purpose is to ensure that a conformant system satisfies a specified set of requirements. The technical architecture identifies the services, interfaces, standards, and their relationships. It provides the technical guidelines for implementation of systems upon which engineering specifications are based, common building blocks are built, and product lines are developed. [48]. (See Architecture, Operational Architecture or Systems Architecture.)

Technical Effort: A technical effort is any activity that influences system performance by defining, designing, or executing a task, requirement, or procedure. All the activities required to implement and execute the systems engineering process are technical efforts.

Technical Objectives: Technical objectives shall be established for each program so that meaningful relationships among need, urgency, risks, and worth can be established.

Technical Requirements: Those requirements that describe what the software must do and its operational constraints. Examples of technical requirements include functional, performance, interface, and quality requirements.

Technology: The application of science or engineering in accomplishing some particular result.

Technology & Technology Management: The application of science or engineering in accomplishing some particular result. Technology Management is the integration of technology throughout the organization as a source of sustainable competitive advantage. [22]. Technology implications of process maturity: Level 1: introduction of new technology is risky; Level 2: technology can help for established tasks; Level 3: organization has qualitative foundation for applying technology; Level 4: organization has quantitative basis for applying technology; Level 5: technology causes process to change, which causes a new search for complementary technology. [22].

Template: The outline or format for a document or memo. Defines what information needs to be included in the document.
Test bed: (1) an environment containing the integral hardware, instrumentation, simulators, software tools, and other support elements needed to conduct a test of a logically or physically separate component. All integral components of the test bed should be verified to be operational before introducing the component under test. (2) A suite of test programs or plans used in conducting the test of a component or system. With these definitions, a test bed could be part of a test bed. [12].

Test Case: Information about observable states, conditions, events, and data--all the causes (stimuli, inputs) that compel or allow software under test to perform one separately definable and measurable function. [9]. It should be possible to identify and track individual test cases. See test failure report. [12]. A collection of test data related to the demonstration of a single capability of the Unit Under Test. It includes information about observable states, conditions, events, and data including inputs and expected outputs. [31].

Test Coverage: The degree to which a given test or set of tests addresses all specified requirements for a given system or component. Components are depth of coverage and breadth of coverage. Test coverage can also refer to code coverage, such as branch and statement test coverage, the results of which will be realized as a metric. [12].

Test Data: Either contained in an ASCII file that the test harness reads during execution or is coded directly into the test harness and compiled prior to test execution. Generally, the test data are compiled into the harness to avoid developing code to convert ASCII data from a data file into Ada objects for use by the harness. [31] Recorded information, regardless of the form or method of the recording, of a scientific or technical nature. The term includes computer software or data incidental to contractual administration, and usually does not include financial or management information.

Test Description: In [2], the software test description (STD) is defined as data item description DI-MCCR-80015A. One STD is typically prepared for each configuration item (CI). The STD describes the test cases and procedures for the formal qualification testing of one CI. [12].

Test Development: The development of anything required to conduct testing. This may include test requirements, strategies, processes, plans, hardware, software, procedures, cases, documentation, an maintenance strategies. (Essentially, internal customers rather than external as that of any product development, except that usually, but not always, the test products use the same or similar efforts. The people involved in the test development effort should use a life-cycle approach; essentially, the same as in the product development effort, and the test products should be treated as assets to be managed rather than expenses to be pared). [12].

Test Director (TD): Responsible to the PM for creating the Test Plan and the Test Reports of the Test Document (TD). Assures adequate Test Descriptions (created by the Lead Analyst). Responsible for executing the “Finalize the Test Document” procedure. May be responsible for executing system tests. May perform any other PROJECT system engineering roles, such as SPAR, but must not be the PROJECT’s Lead Designer, Lead Programmer, or any of the Designers or Programmers as this may be conflict of independent testing interests. May perform role of Lead Analyst or Analyst.

Test Driver or Harness: A specifically written computer program that controls the execution of test programs. This may involve the operator interface and sequencing, monitoring, and analysis of these individual test programs. A large test driver or harness may be better described as a test executive--a small operating system. [12]. A software component (main program) created by the test engineer that contains calls to the entry points of the Unit Under Test (UUT). The driver will normally record output data to a file. These test results are used to verify the performance of the software. [31]. Compiling the UUT, the driver, and the stubs, then linking these components into an executable program creates a test harness. [31].

Test, Metrics, QA: These are separate subjects in theory or chaos only. In practice, testing generates metrics that are used to improve the quality of the product and process. [12].

Test Plan: A formal or informal plan to be followed to assure the controlled testing of the product under test.

Test Procedure: The formal or informal procedure that will be followed to execute the test in question. This is usually a written document that will allow others to carry out the test with a minimum of training and confusion. These will be a separate test procedure for each test case, which will be noted in the test plan. [12].

Test Readiness Review (TRR): Technical Review and Audits for Systems, Equipment’s, and Computer Software, the test readiness review comes after the critical design review and before the functional configuration audit. By default, one test readiness review is conducted for each CI. This is to verify that the item is ready for formal testing and approval. [12]. A test review with the customer to determine that all functionality is represented before actual customer testing. The TRR establishes the production baseline. A Joint Technical Review (JTR) conducted by the Executive Steering Committee (ESC) of a project or increment prior to Systems Test Phase. These reviews are held to resolve open issues regarding the one or more of the following:

- the status of the software to be tested

- the status of the software test environment;

- the test cases and test procedures to be used for CI qualification testing or system qualification testing.

Test Report: In [2], this document is the software test report (STR), which is data item description number DI-MCCR-80017A. One STR is typically prepared for each CI. This document describes the test results for the formal qualification testing of one CI. [12].

Test Results: Any data values that are passed out of the test harness that allow the engineer to gauge whether a test execution has been successful. This data may be written to a text file or directly to a computer screen. The format of this data is specified by the project guidelines or left to the discretion of the engineer. Generally, this data is produced by coding Ada TEXT_IO.PUT_LINE calls into the test harness for each of the data values to be examined. [31].

Test Status Report: Shows metrics for work products and work processes. Shows quantity information at a glance, e.g., total test cases, total run, total passed. Generally shows little or nothing about quality of tests. [8].

Test Stubs: Software components that take the place of library units (in Ada) that are dependents of the Unit Under Test (UUT). Stubs are used to allow more precise control over the values that dependent subprograms pass back to the UUT (smart stubs), or to take the place of units in the closure that are not available at the time of testing (dumb stubs). [31].

Testability: Ability to be easily and thoroughly tested. [28]. (1) The degree to which a system or component facilitates the establishment of test criteria and the performance of tests to determine whether those criteria have been met. (2) The degree to which a requirement is stated in terms that permit establishment of test criteria and performance of tests to determine whether those criteria have been met. [[59]].

Testable: A requirement or set of requirements is considered to be testable if an objective and feasible test can be designed to determine whether each requirement has been met.

Testing: (1) Evaluating an attribute or capability of a program or system and determine that it meets its required result. [3]. (2) Establishing confidence that a product does what it is supposed to. (3) Exercising or evaluating a system or component under specified conditions, observing or recording the results, and evaluating some aspect of the system or component. [5]. Any activity aimed at evaluating an attribute or capability of a program or system to determine that it meets its required results. The process of operating a system or component under specified conditions, observing or recording the results, and making an evaluation of some aspect of the system or component.

To-Complete Performance Index:

Budget At Completion (BAC) = Cost performance efficiency required to accomplish remaining work within the BAC. TCPI (BAC) = (BAC-BCWP) / (BAC - ACWP).

Estimate At Completion (EAC) = Cost performance efficiency required to accomplish remaining work within the EAC. TCPI (EAC) = (BAC-BCWP) / (EAC - ACWP).

Traceability: The degree to which a relationship can be established between two or more products of the development process, especially products having a predecessor-successor or master-subordinate relationship to each other. [5]. The ability to trace the history, application or location of an entity, by means of recorded identifications. [42].

Traceability of Requirements to Design: To document the traceability of the requirements allocated from the system specification to each CI

TRACKS (Sustainment and New Start Projects)

New Start Track

The New Start Track should be chosen whenever a project is being proposed for a system that does not use system artifacts (design documents, user manual, code, test scripts, software development plans, etc.) that are associated with a previous project at SSG.

Sustainment Track.

The Sustainment Track should be chosen whenever a project is being proposed for an existing SSG system that uses previously established artifacts that are associated with the system and primarily makes minor updates to those artifacts or creates new artifacts that require a relatively small amount of effort.

Making a choice when neither decision is clear.
In cases where an existing system is being modified or replaced, it may not be clear if the work to be performed updating or creating new artifacts is minor compared to the original work involved in generating the artifacts. In that case, either decision is acceptable as long as the Project Manager, Senior Manager and Customer agree.

The main issue involved is that the Sustainment proposal (Sustainment System Cost Estimate) is a very simplified version of the New Start Proposal.

Train: To make proficient with specialized instruction and practice. (See also orientation.)

Training Group: The collection of individuals (both managers and staff) who are responsible for coordinating and arranging the training activities for an organization. This group typically prepares and conducts most of the training courses and coordinates use of other training vehicles.

Training Materials (TM): Project specific training materials to be presented to the end users or customers, etc. Project training needs to be defined in the Implementation Plan (IP).

Training Program (TP): (1) The set of related elements that focus on addressing an organization's training needs. It includes an organization's training plan, training materials, development of training, conduct of training, training facilities, evaluation of training, and maintenance of training records. (2) To develop the skills and knowledge of individuals so they can perform their roles effectively and efficiently. This is a Level 3 SEI-CMM Key Process Area.

Training Waiver: A written approval exempting an individual from training that has been designated as required for a specific role. The exemption is granted because it has been objectively determined that the individual already possesses the needed skills to perform the role. [14].

Transition: The process of transferring responsibility for the acquired software products from the project manager to the software support organization. [54].

Unit: See Software Unit.

Unit Development Folder (UDF): This folder is designed to communicate information required to explain in detail, the design and maintenance for all modules of coding within a given coding unit. It will also provide the necessary guidelines and framework of reference to develop the next level or levels of detail within the coding unit. A repository for material pertinent to the development of a particular body of software. Contents typically include (either directly or by reference) considerations, rationale, and constraints related to requirement analysis, design, and implementation; developer-internal test information; and schedule and status information.

Unit and Integration Testing: Integrating the software corresponding to two or more software units, testing the resulting software to ensure that it works together as intended, and continuing this process until all software in each CI is integrated and tested.
User Manual (UM): Instructs the end user on how to use the system.

Validation: Determining datum conformance with specifications. [12]. Compares the information content of a work product to an extrinsic "truth"; i.e., to the end-user's requirements. The process of evaluating software to determine whether the products of a given development phase satisfy the conditions imposed at the start of the phase. [5]. "Am I building the right product?" The process of evaluating software to ensure compliance with specified requirement. [42]. The process of evaluating software during or at the end of the development process to determine whether it satisfies specified requirements.

Validation Reviews: Are usually refer to as a review conducted within the program like the reviews (SSR, CDR, etc.) below or it could be reviews conducted with the DAC or PEO. [43].

Variance at Completion XE "Variance at Completion (VAC):General" (BAC - EAC): The cost overrun or underrun at completion. "How much over or under the contract target or estimated cost is our EAC?" Negative is unfavorable.

Verification: Establishing the accuracy or reality of a datum. [12]. The process of evaluating software to determine whether the products of a given development phase satisfy the conditions imposed at the start of that phase. [30]. Compares intrinsic properties of a work product to a standard for all work products of the same type. The process of evaluating software to determine whether the products of a given development phase satisfy the conditions imposed at the start of that phase. [5]. "Am I building the product right?" The process of evaluating the products of a given phase to ensure correctness and consistency with respect to the products and standards provided as input to that phase. [42]. (1) The process of evaluating the products of a given software activity to determine correctness and consistency with respect to the products and standards provided as input to that activity. (2) The process of determining whether or not the products of a given phase of the software development cycle fulfill the requirements established during the previous phase. (3) The act of reviewing, inspecting, testing, checking, auditing, or otherwise establishing and documenting whether or not items, processes, services, or documents conform to specified requirements.

Version: An identified and documented body of software. Modifications to a version of software (resulting in a new version) require configuration management actions by either the contractor, the contracting agency, or both. The version number will be a four position number as in the following example: 2.0.1.0 where the 1st position signifies the baseline. If 30% or more of the code has changed, this position of the version number would change. The 2nd position signifies major modifications or new functionality to that baseline. The 3rd position signifies a maintenance release for sustainment or fix and repair activity. The 4th position is for use by the developer for controlling and managing the builds required to arrive at the releasable version. This field will be zeroed out when the new release version is assigned.
Version Control: A means to identify and manage configuration items as they change over time, usually provided by a software tool designed for configuration management.

Version Description Document (VDD): A document that accompanies and identifies a given release of a system or component. Typical contents include an inventory of system or component parts, identification of changes incorporated into this version, and installation and operating information unique to the version described. [53].

Walkthrough: A review process in which a designer or programmer leads one or more other members of the development team through a segment of design or code that he or she has written, while the other members ask questions and make comments about technique, style, possible errors, violation of development standards, and other problems. [56].

Waiver: A written authorization to accept a configuration item, which during production of, after having been submitted for inspection, is found to depart from specified requirements, but nevertheless is considered suitable for use "as is" or after re-work by an approved method. A document stating a cancellation or reduction of a requirement. [54].

Well-defined Process: A process that includes readiness criteria, inputs, standards, and procedures for performing the work, verification mechanisms (such as peer reviews), outputs, and completion criteria. [14].

White Box Testing: Relates to testing the actual code structure to determine if it is “correct”. One looks at the control structure of the procedural design to create the test cases. A limitation of white box testing is that is will not tell you if the code is completely wrong, i.e., wrong function. White Box is usually concerned with obtaining adequate code coverage, including Basis and Data Paths, Segments, Statements, Call pairs, and interfaces. It is complementary to Black Box. [18]. Unit testing and Integration Testing is considered White Box. System, Interface and Interoperability Testing is considered Black Box. See Black Box.

Work Breakdown Structure (WBS): A product-oriented listing, in family-tree order, of the hardware, software, services and other work tasks that completely defines a product or program. The listing results from project engineering during the development and production of a materiel item. A WBS relates the elements of work to be accomplished to each other and to the end product. A task oriented family tree, composed of hardware, software, service and support, and other work tasks that result from the system development effort. WBS defines the activities or tasks to be performed as work units, and relates these work units to each other and the successful completion of the development effort. Detailed WBS is a basic step in the planning process. It provides a basis for metrics and management control during software development and support. [36]. “A hierarchical structure used to organize tasks for reporting schedules and tracking costs. With Microsoft Project, you can represent the work breakdown structure by using task IDs or by assigning your own WBS code to each task.” [45].

Work Package: Detailed jobs, or material items. A work package has the following characteristics: it represents units of work at levels where work is performed; it is clearly distinguished from all other work packages; it is assigned to a single organizational element; it has scheduled start and completion dates, and as applicable, interim milestones, all of which are representative of physical accomplishment; it has a budget or assigned value expressed in terms of dollars, work hours, or other measurable units; its duration is limited to a relatively short span of time or it is subdivided by discrete value milestones to facilitate the objective measurement of work performed; and it is integrated with detailed engineering, manufacturing, or other schedules. [49]. Authors addition: it is the basic unit of EV. The resourced task over time. Degree of refinement (detail) depends upon the amount of risk and degree of visibility needed. The person responsible for the work package is called the Control Account Manager (CAM). See Planning Package by comparison.

Work year: Unit used to measure the available duty time for work in a year. One work year equals 1,550 work hours. [47].

 References

1. Adrion, W.R., MS. Branstad, and J.C. Cherniavishy, Validation, Verification and Testing of Computer Software, National Bureau of Standards, NBS Special Publication 500-75, 1980.

3. Hetzel, William C., A Complete Guide to Software Testing, QED Information Sciences, Inc., 1988.

4. Standard for Software Quality Metrics Methodology, IEEE 1061, New York, 1992.

5. [59].12-1990, IEEE Standard Glossary of Software Engineering Terminology (corrected edition). IEEE Standards Collection--Software Engineering, 1993 Edition, Institute of Electrical and Electronics Engineers, Inc, New York, 1993 or IEEE 729/610.12, Glossary of Software Engineering Terminology, New York, 1990.

6. McCabe, Thomas J., and Charles W. Butler, “Design Complexity Measurement and Testing”, Communications of the ACM, December 1989.

7. Myers, Glenford J., The Art of Software Testing, John Wiley & Sons, New York, 1979.

8. Price, Gordon, Test Preparation, Execution, and Evaluation Tools Report, Software Technology Support Center, 1993.

9. Programming Environments Inc. publication, The Letter T.

10. Taguchi, Genichi, and Don Clausing, Robust Quality, Harvard Business Review, January-February 1990.

11. Youngblut, Christine, SDS Software Testing and Evaluation: A Review of the State of the Art in Software Testing and Evaluation with Recommended R&D Tasks, Institute of Defense Analysis, IDA Paper P-2132, February 1989.

12. Price, Gordon, Terms in Transition--Software Testing Terminology, CrossTalk, Software Technology Support Center, Volume 7 Number 7, July 1994.

13 Test and Verification, A White Paper, The Analytic Sciences Corporation (TASC), 15 July 1994.

14. Paulk, M., etal; The Capability Maturity Model, Guidelines for Improving the Software Process, Addison Wesley, 1995.

15. Roetzheim, William H., Developing Software to Government Standards, Prentice Hall, Englewood Cliffs, N.J. 1991.

16. OSD (A&T), “Development Test & Evaluation (DT&E) Policy Guidance for Software-Intensive Systems in Support of Recommendations from the GAO”, 23 May 1994.

17. OSD (OT&E), “Software Maturity Criteria for Dedicated Operational Test and Evaluation of Software-Intensive Systems”, 31 May 1994.

18. Daich, Gregory T and Dr. Vern Crandall, Seminar for Improving the Software Testing Process, handout provided by 24 October 1994.

19. IEEE Standard for Software Unit Testing, ANSI/IEEE Std 1008-1987, Dec 11, 1986.

20. Gilb, Tom and Dorothy Graham, Software Inspection, Addison Wesley, 1993.

21. Perry, William E., A Structured Approach to Systems Testing, QED Information Science, Inc., Wellesley, MA 1988.

22. Advanced CMM Workshop, June 26/27 1995, SEI, CMU.

23. Gotel, O., and A. Finkelstein, “An Analysis of the Requirements Traceability Problem,” Proceeding of the First International Conference on Requirements Engineering, Colorado Springs, Co., April 994. Pp. 94-101.

24. CrossTalk, The Journal of Defense Software Engineering, Volume 8 Number 4, published by the Software Technology Support Center, Apr 95.

25. CrossTalk, The Journal of Defense Software Engineering, Volume 8 Number 2, published by the Software Technology Support Center, Feb 95.

26. Client/Server Today, March 1995, Volume 2 Number 3.

27. Paulk, Mark, Bill Burtis, Mary Beth Chrissis, Charles V. Weber; Capability Maturity Model for Software Version 1.1, CMU/SEI-93-TR-24, ESC-TR-93-177, Feb 93.

28. MIL-STD-498, 5 Dec1994.

29. DoD Directive (DoDD) 5000.1, March 15, 1996.

30. Carnegie Mellon, Software Engineering Institute, Capability Maturity Model, Version 1.1, February 1993.

31. Patiotta, J.J. and William McCaffrey, “Computer-Aided Software Test Tools for Unit Level Test”, CrossTalk, The Journal of Defense Software Engineering, published by the Software Technology Support Center, Hill AFB, Vol 7 Number 12 Dec 1994.

32. AFMC Instruction 500-401 as cited in the SSG SEP V 3.2, reference 34.

33. HQ SSG Instruction 33-3, 7 March 1996.

34. Standard Systems Group (SSG), Systems Engineering Process, Version 3.

35. DBOF Implementation, DBOF Tiger Team Powerpoint presentation given to the 2 letters dated 24 Sep 96.

36. Service Level Agreement (SLA) Template provided by SSG’s Business Planning & Requirements Division (PMR.).

37. Software Measurement for DoD Systems: Recommendations for Initial Core Measures; CMU/SEI-92-TR-19, ESC-TR-92-019 Technical Report dated September 1992.

38. E-mail from Katrina Howard, PMR, to Barry Morton, ENP, and 6 December 1996.

39. Park, Robert E. Software Size Measurement: Framework for Counting Source Statements, Technical Report CMU/SEI-92-TR-20 ESC-TR-92-020.

40. Florac, William, A., Software Quality Measurement: A Framework for Counting Problems and Defects, Technical Report CMU/SEI-92-TR22 ESC-TR-92-022.

41. Goethert, Wolfhart B. Software Effort & Schedule Measurement: A Framework for Counting Staff-hours and Reporting Schedule Information, Technical Report CMU/SEI-92-TR-21, ESC-TR-92-021 September 1992.

42. The ISO 9000 Handbook, edited by Robert W. Peach, CEEM Information Services, Fairfax, VA., 1992.

43. Email from Dennis Thompson (PMR) dated 9 January 1997.

44. Discussions with Sgt Raphael (SSQT) and Barry Morton (ENP) 14 Jan 97.

45. MS Project Version 4.0

46. PM Process Attachment 5 found in the MIS.

47. COMMUNICATIONS-COMPUTER SYSTEMS REQUIREMENT DOCUMENTATION, ANALYSIS, AND APPROVAL, HQ SSG INSTRUCTION 33-3, 7 March 1996

48. DoD Joint Technical Architecture (JTA), Version 1.0, August 1996.

49. Earned Value Management Implementation Guide obtained from FMC.

50. Grady, R.B., and Deborah L. Caswell, Software Metrics: Establishing a Company-wide Program, Prentice-Hall, Inc, Englewood, New Jersey, 1987.

51. Crosstalk, July 1997 Volume 10 Number 7

52. IEEE Std 610.12-1990

53. Class notes from Dr. Pat Hanavan’s Software Configuration Management Course, taught 14-18 July 1997.

54. Software Acquisition Capability Maturity Model (SA-CMM) Version 1.01, CMU/SEI-96-TR-020, December 1996.

55. Object Solutions—Managing the Object Oriented Project, Grady Booch, Addison-Wesley Publishing Co., Menlo Park, CA, 1997, ISBN 0-8053-0594-7.

56. The Program Manager’s Guide to Software Acquisition Best Practices, DoD Software Acquisition Best Practices Initiative, Version 2.

57. Notes from a FasTrak training course on “Writing Better Requirements”, 3/14/97.

58. McConnel, Steve, Code Complete: A Practical Handbook of Software Construction, Microsoft Press, ISBN 1-55615-484-4, 1993.

59. IEEE-STD-610

* Systems: People, machines, and facilities organized to accomplish a set of specific functions (FIPS PUB 3), which cannot be further subdivided while still performing required functions. Includes the radios, terminals, command, control, and support facilities, sensors and sensor platforms, automated information systems, etc., necessary for effective operations.

** Interconnections: The manual, electrical, or electronic communications paths/linkages between the systems. Includes the circuits, networks, relay platforms, switches, etc., necessary for effective communications.

100

_946901789

