SWCH025
Design Document Checklist
Date: 03 Jan 2000

	Design Document

Checklist

	

	
	1. Project Name:
	
	2. Release:
	
	3. Peer Review Date:
	
	

	

	
	4. Checklist Users Name/Office/Role:
	
	

	
	
	
	

	

	
	5. Work Product Author/Office:
	Design Document (DD)
	

	
	
	
	

	

	
	6. State of Product:

     Draft      Near Final      Final
	7. Purpose of Checklist Use:

     Initial      Follow-up      Summary
	8. Type of Review:

     Meeting      Coordination
	

	

	
	9. Location of Work Product:
	
	

	
	10. Supporting Material and Location:
	Ref: Code Complete, Steve McConnell, Microsoft Press, 1993 ISBN 1-55615-484-4;
	

	
	the RTM in Dynamic Object-Oriented Requirements System (DOORS), SRS, SSS and ConOps
	

	

	
	11. Time Charge Number:
	
	

	

	
	12. Objective Exit Criteria (Answer "Y" for Yes or "N" for No in the next column)
	Met?
	

	
	1
	Is the overall organization of the program clear, including a good architectural overview and justification?
	
	

	
	2
	Are modules well defined, including their functionality and their interfaces to other modules?
	
	

	
	3
	Are all the functions listed in the requirements covered sensibly by neither too many nor too few modules?
	
	

	
	4
	Are the requirements allocated to the software unit from the requirement specification identified?
	
	

	
	5
	Is the architecture designed to accommodate likely changes?
	
	

	
	6
	Does the design ensure COE and JTA compliance?
	
	

	
	7
	Are any constraints, limitations, or unusual features in the design listed and explained?
	
	

	
	8
	Are all key algorithms described and justified for each software unit?
	
	

	
	9
	Are all major objects described and justified?
	
	

	
	10
	Is there a design description of each software unit of the CI, using diagrams, tables, flow charts, or a program design language?
	
	

	
	11
	Is each software unit described by name and a project-unique identifier?
	
	

	
	12
	Is the purpose of each software unit described?
	
	

	
	13
	Is a strategy for handling user input described?
	
	

	
	14
	Is a strategy for handling I/O described and justified?
	
	

	
	15
	Are key aspects of the user interface defined?
	
	

	
	16
	Is the user interface modularized so that changes in it won’t affect the rest of the program?
	
	

	
	17
	Are memory-use estimates and a strategy for memory management described and justified?
	
	

	
	18
	Does the architecture set space and speed budgets for each module?
	
	

	
	19
	Is a strategy for handling strings described, and are character-string-storage estimates provided?
	
	

	
	20
	Is a coherent error-handling strategy provided?
	
	

	
	21
	Are error messages managed as a set to present a clean user interface?
	
	

	
	22
	Is a level of robustness specified?
	
	

	
	23
	Is any part over- or under-architected? Are expectations in this area set out explicitly?
	
	

	
	24
	Are the major system goals clearly stated?
	
	

	
	25
	Does the whole architecture hand together conceptually?
	
	

	
	26
	Is the top-level design independent of the machine and language that will be used to implement it?
	
	

	
	27
	Are the motivations for all major decisions provided?
	
	

	
	28
	Are you, as a programmer who will implement the system, comfortable with the architecture?
	
	

	
	29
	Have you used round-trip design, selecting the best of several attempts rather than the first attempt?
	
	

	
	30
	Is the design of each subprogram consistent with the design of related subprograms?
	
	

	
	31
	Does the design adequately address issues that were identified and deferred at the architectural level?
	
	

	
	32
	Are you satisfied with the way the program has been decomposed into modules or objects?
	
	

	
	33
	Are you satisfied with the way the modules have been decomposed into routines?
	
	

	
	34
	Are subprogram boundaries well defined?
	
	

	
	35
	Are subprograms designed for minimal interaction with each other?
	
	

	
	36
	Does the design make sense both from the top down and from the bottom up?
	
	

	
	37
	Does the design differentiate between the problem-domain component, the user-interface component, the task-management component, and the data-management component?
	
	

	
	38
	Is the design intellectually manageable?
	
	

	
	39
	Does the design have low complexity?
	
	

	
	40
	Is the programming language to be used specified and a rationale or policy for its use?
	
	

	
	41
	Will the program be easy to maintain?
	
	

	
	42
	Does the design hold connections among subprograms to a minimum?
	
	

	
	43
	Does the design anticipate future extensions to the program?
	
	

	
	44
	Are subprograms designed so that you can use them in other systems?
	
	

	
	45
	Do low-level routines have high fan-in?
	
	

	
	46
	Do most routines have low-to-medium fan-out?
	
	

	
	47
	Will the design be easy to port to another environment?
	
	

	
	48
	Is the design stratified into layers?
	
	

	
	49
	Does the design use standard techniques and avoid exotic, hard-to-understand elements?
	
	

	
	50
	Is the design referenced on the Requirements Traceability Matrix (RTM) in DOORS?
	
	

	
	51
	If any will software units will be implemented with existing reusable software, are they identified?
	
	

	
	52
	If so, is the identifier of the reusable software, the software library where it resides, and its associated design document provided?
	
	

	
	
	If software from this design will be reused, is the program library where the software will be placed identified?
	
	

	
	53
	Are all inputs, outputs, and other data elements of the software unit identified, including as applicable:
	
	

	
	54
	- Accuracy and priority?
	
	

	
	55
	- Precision/resolution in terms of significant digits?
	
	

	
	56
	- Frequency with which the data element is input, calculated, refreshed, or output such as 10 kHz, 50 Msec, etc?
	
	

	
	57
	- Legality checks to be performed on the data element?
	
	

	
	58
	- Data type such as integer, ASCII, fixed, real, enumeration, etc?
	
	

	
	59
	- Data representation/format/structure?
	
	

	
	60
	- Sources, including other software units where the data element is set or calculated?
	
	

	
	61
	- Destinations, including other software elements where the software is used?
	
	

	
	62
	- Maximum size and storage needs?
	
	

	
	63
	- Access methods, such as random, direct, or sequential?
	
	

	
	64
	The logic flow to be used by the software unit including:

- Conditions under which software unit execution is initiated?
	
	

	
	65
	- Conditions under which control is passed to other software units?
	
	

	
	66
	- Response and response time to each input, including data conversion, renaming, and data transfer operations?
	
	

	
	67
	- Dynamically controlled sequencing during the software unit's operation, including:
	
	

	
	68
	-- The method for sequence control?
	
	

	
	69
	-- Data transfer in and out of memory?
	
	

	
	70
	-- The sensing of discrete input signals, and timing relationships between interrupt operations within the software unit?
	
	

	
	n
	Add any others you may wish
	
	

	

	
	13. Action Items and improvement recommendations
	Page/Para
	Reviewer
	Priority
	Suspense
	Closed Date

	
	1
	
	
	
	
	
	
	

	
	2
	
	
	
	
	
	
	

	
	.
	
	
	
	
	
	
	

	
	n
	
	
	
	
	
	
	

	

	
	14. Names of reviewers / office
	

	
	#
	
	Role
	Date Reviewed
	Time Spent
	

	
	1
	
	
	
	
	

	
	2
	
	
	
	
	

	
	.
	
	
	
	
	

	
	n
	
	
	
	
	

	

	
	15. Summary of Results
	

	
	Results by
	Reviewers Opinion of Meeting Criteria (Y/N)
	

	
	Criteria
	#1
	#2
	#3
	#4
	#5
	#6
	#7
	#8
	

	
	1
	
	
	
	
	
	
	
	
	

	
	2
	
	
	
	
	
	
	
	
	

	
	.
	
	
	
	
	
	
	
	
	

	
	n
	
	
	
	
	
	
	
	
	

	

	
	16. Facilitator recommends a Follow-up Review: Yes / No Recommended date _______________
	

	

	
	17. SPAR Review:____________________
	Date:______________________
	
	
	

	

	
	Instructions for using this checklist are in the Peer Review procedure [RVPR003]
	

1

