SWCH032
Software Unit Coding Checklist
Date: 03 Jan 2000

	Software Unit Coding

Checklist

	

	
	1. Project Name:
	
	2. Release:
	
	3. Peer Review Date:
	
	

	

	
	4. Checklist Users Name/Office/Role:
	
	

	
	
	
	

	

	
	5. Work Product Author/Office:
	Each software unit
	

	
	
	
	

	

	
	6. State of Product:

     Draft      Near Final      Final
	7. Purpose of Checklist Use:

     Initial      Followup      Summary
	8. Type of Review:

     Meeting      Coordination
	

	

	
	9. Location of Work Product:
	
	

	
	10. Supporting Material and Location:
	
	

	
	
	

	

	
	11. Time Charge Number:
	
	

	

	
	12. Objective Exit Criteria (Answer "Y" for Yes or "N" for No in the next column)
	Met?
	

	
	
	Organizing Straight-Line Code
	
	

	
	1
	Does the code make dependencies among statements obvious?
	
	

	
	2
	Do the names of routines make dependencies obvious?
	
	

	
	3
	Do comments describe any dependencies that would otherwise be unclear?
	
	

	
	4
	Does the code read from top to bottom?
	
	

	
	5
	Are references to variables as close together as possible—both from each reference to a variable to the next and in total live time?
	
	

	
	6
	Are related statements grouped together?
	
	

	
	7
	Have relatively independent groups of statements been moved into their own routines?
	
	

	
	
	Conditionals
	
	

	
	8
	If-then statements: Is the nominal path through the code clear?
	
	

	
	9
	If-then statements: Do if-then tests branch correctly on equality?
	
	

	
	10
	If-then statements: Is the else clause present and documented?
	
	

	
	11
	If-then statements: Are the if and else clauses used correctly—not reversed?
	
	

	
	12
	If-then statements: Does the normal case follow the if rather than the else?
	
	

	
	13
	If-then-else-if chains: Are complicated tests encapsulated in boolean function calls?
	
	

	
	14
	If-then-else-if chains: Are the most common cases tested first?
	
	

	
	15
	If-then-else-if chains: Are all cases covered?
	
	

	
	16
	If-then-else-if chains: Is the if-then-else chain the best implementation—better than a case statement?
	
	

	
	17
	Case statements: Are case ordered meaningfully?
	
	

	
	18
	Case statements: Are the actions for each case simple—calling other routines if necessary?
	
	

	
	19
	Case statements: Does the case statement test a real variable, not a phony one that’s made up solely to use and abuse the case statement?
	
	

	
	20
	Case statements: Is the use of the default clause legitimate?
	
	

	
	21
	Case statements: Is the default clause used to detect and report unexpected cases?
	
	

	
	22
	Case statements: In C, does the end of each case have a break?
	
	

	
	
	Loops
	
	

	
	23
	Is the loop entered from the top?
	
	

	
	 24
	Is initialization code directly before the loop?
	
	

	
	25
	If the loop is an infinite loop or an event loop, is it constructed cleanly rather than using a kludge such as for I:=1 to 9999?
	
	

	
	26
	If the loop is a C for loop, is the loop header reserved for loop-control code?
	
	

	
	27
	Does the loop use begin and end or their equivalent to prevent problems arising from improper modifications?
	
	

	
	28
	Does the loop have something in it? Is it nonempty?
	
	

	
	29
	Are housekeeping chores grouped, at either the beginning or the end of the loop?
	
	

	
	30
	Does the loop perform one and only one function—as a well-defined routine does?
	
	

	
	31
	Does the loop end under all possible conditions?
	
	

	
	32
	Is the loop’s termination condition obvious?
	
	

	
	33
	If the loop is a for loop, does the code inside it avoid monkeying with the loop index?
	
	

	
	34
	Is a variable used to save important loop-index values rather than using the loop index outside the loop?
	
	

	
	35
	Does the loop use safety counters—if you’ve instituted a safety-counter standard?
	
	

	
	36
	Is the loop index an ordinal type or an enumerated type?
	
	

	
	37
	Does the loop index have a meaningful name?
	
	

	
	38
	Does the loop avoid index cross talk?
	
	

	
	39
	Is the loop short enough to view all at once?
	
	

	
	40
	Is the loop nested to three levels or less?
	
	

	
	41
	If the loop is long, is it especially clear?
	
	

	
	
	Unusual Control Structures
	
	

	
	42
	Are gotos used only as a last resort, and then only to make code more readable and maintainable?
	
	

	
	43
	If a goto is used for the sake of efficiency, has the gain in efficiency been measured and documented?
	
	

	
	44
	Are gotos limited to one labeled per routine?
	
	

	
	45
	Do all gotos go forward, not backward?
	
	

	
	46
	Are all goto labels used?
	
	

	
	47
	Does each routine use the minimum number of returns possible?
	
	

	
	48
	Do returns enhance readability?
	
	

	
	49
	Does the recursive routine include code to stop the recursion?
	
	

	
	50
	Does the routine use a safety counter to guarantee that the routine stops?
	
	

	
	51
	Is recursion limited to one routine?
	
	

	
	52
	Is the routine’s depth of recursion within the limits imposed by the size of the program’s stack?
	
	

	
	53
	Is recursion the best way to implement the routine? Is it better than simple iteration?
	
	

	
	
	Control-Structure Issues
	
	

	
	54
	Do expressions use True and False rather than 1 and 0?
	
	

	
	55
	Are boolean values compared to False implicitly?
	
	

	
	56
	Have expressions been simplified by the addition of new boolean variables and the use of boolean functions and decision tables?
	
	

	
	57
	Are boolean expressions stated positively?
	
	

	
	58
	In C, are numbers, characters, and pointers compared to 0 explicitly?
	
	

	
	59
	Do begin-and-end pairs balance?
	
	

	
	60
	Are begin-and-end pairs used everywhere they’re needed for clarity?
	
	

	
	61
	Are null statements obvious?
	
	

	
	62
	Have nested statements been simplified by re-testing part of the conditional, converting to if-then-else or case statements, or moving nested code into its own routine?
	
	

	
	63
	If a routine has a decision count of more than 10, is there a good reason for not redesigning it?
	
	

	
	
	Layout
	
	

	
	64
	Is formatting done primarily to illuminate the logical structure of the code?
	
	

	
	65
	Can the formatting scheme be used consistently?
	
	

	
	66
	Does the formatting scheme result in code that’s easy to maintain?
	
	

	
	67
	Does the formatting scheme improve code readability?
	
	

	
	68
	Does the code avoid doubly indented begin-end pairs?
	
	

	
	69
	Are sequential blocks separated from each other with blank lines?
	
	

	
	70
	Are complicated expressions formatted for readability?
	
	

	
	71
	Are single-statement blocks formatted consistently?
	
	

	
	72
	Are case statements formatted in a way that’s consistent with the formatting of other control structures?
	
	

	
	73
	Have gotos been formatted in a way that makes their use obvious?
	
	

	
	74
	Do incomplete statements end the line in a way that’s obviously incorrect?
	
	

	
	75
	Are continuation lines indented sensibly?
	
	

	
	76
	Are groups of related statements aligned?
	
	

	
	77
	Are groups of unrelated statements unaligned?
	
	

	
	78
	Does each line contain at most one statement?
	
	

	
	79
	Is each statement written without side effects?
	
	

	
	80
	Are data declarations aligned?
	
	

	
	81
	Is there at most one data declaration per line?
	
	

	
	82
	Are the comments indented the same number of spaces as the code they comment?
	
	

	
	83
	Is the commenting style easy to maintain?
	
	

	
	85
	Are the arguments to each routing formatted so that each argument is easy to read, modify, and comment?
	
	

	
	86
	In C, are new-style routine declarations used?
	
	

	
	87
	In Fortran, are parameters declared separately from local variables?
	
	

	
	88
	In languages that permit more than one source file, does each file hold code for one and only one module?
	
	

	
	89
	Are routines within a file clearly separated with blank lines?
	
	

	
	90
	If a file does contain multiple modules, are all the routines in each module grouped together and is the module clearly identified?
	
	

	
	91
	Alternatively, are all routines in alphabetical sequence?
	
	

	
	
	Self-Documenting Code
	
	

	
	92
	Does each routine’s name describe exactly what the routine does?
	
	

	
	93
	Does each routine perform one well-defined task?
	
	

	
	94
	Have all parts of each routine that would benefit from being put into their own routines been put into their own routines?
	
	

	
	95
	Is each routine’s interface obvious and clear?
	
	

	
	96
	Are type names descriptive enough to help document data declarations?
	
	

	
	97
	Are variables named well?
	
	

	
	98
	Are variables used only for the purpose for which they’re named?
	
	

	
	99
	Are loop counters given more informative names than i, j, and k?
	
	

	
	100
	Are well-named enumerated types used instead of makeshift flags or boolean variables?
	
	

	
	 101
	Are named constants used instead of magic numbers or magic strings?
	
	

	
	 102
	Do naming conventions distinguish among type names, enumerated types, name constants, local variables, module variables, and global variables?
	
	

	
	 103
	Are extra variables used for clarity when needed?
	
	

	
	 104
	Are references to variables close together?
	
	

	
	 105
	Are data structures simple so that they minimize complexity?
	
	

	
	 106
	Is complicated data accessed through abstract access routines (abstract data types)?
	
	

	
	 107
	Is the nominal path through the code clear?
	
	

	
	 108
	Are related statements grouped together?
	
	

	
	 109
	Have relatively independent groups of statements been packaged into their own routines?
	
	

	
	 110
	Does the normal case follow the if rather than the else?
	
	

	
	 111
	Are control structures simple so that they minimize complexity?
	
	

	
	 112
	Does each loop perform one and only one function, as a well-defined routine would?
	
	

	
	 113
	Is nesting minimized?
	
	

	
	 114
	Have boolean expressions been simplified by using additional boolean variables, boolean functions, and decision tables?
	
	

	
	 115
	Does the program’s layout show its logical structure?
	
	

	
	 116
	Is the code straightforward, and does it avoid cleverness?
	
	

	
	 117
	Are implementation details hidden as much as possible?
	
	

	
	 118
	Is the program written in terms of the problem domain as much as possible rather than in terms of computer-science or programming-language structure?
	
	

	
	 119
	Good Commenting Technique
	
	

	
	 120
	Does the source listing contain most of the information about the program?
	
	

	
	 121
	Can someone pick up the code and immediately start to understand it?
	
	

	
	 122
	Do comments explain the code’s intent or summarize what the code does, rather than just repeating the code?
	
	

	
	 123
	Is the PDL-to-code process used to reduce commenting time?
	
	

	
	 124
	Has tricky code been rewritten rather than commented?
	
	

	
	 125
	Are comments up to date?
	
	

	
	 126
	Are comments clear and correct?
	
	

	
	 127
	Does the commenting style allow comments to be easily modified?
	
	

	
	 128
	Does the code avoid endline comments?
	
	

	
	 129
	Do comments focus on why rather than how?
	
	

	
	 130
	Do comments prepare the reader for the code to follow?
	
	

	
	 131
	Does every comment count? Have redundant, extraneous, and self-indulgent comments been removed or improved?
	
	

	
	 132
	Are surprises documented?
	
	

	
	 133
	Have abbreviations been avoided?
	
	

	
	 134
	Is the distinction between major and minor comments clear?
	
	

	
	 135
	Is code that works around an error or undocumented feature commented?
	
	

	
	 136
	Are units on data declarations commented?
	
	

	
	 137
	Are the ranges of values on numeric data commented?
	
	

	
	 138
	Are coded meanings commented?
	
	

	
	 139
	Are limitations on input data commented?
	
	

	
	 140
	Are flags documented to the bit level?
	
	

	
	 141
	Has each global variable been commented where it is declared?
	
	

	
	 142
	Has each global variable been identified as such at its use, by either a naming convention or a comment?
	
	

	
	 143
	Are magic numbers documented or, preferably, replaced with named constants or variables?
	
	

	
	 144
	Is each control statement commented?
	
	

	
	 145
	Are the ends of long or complex control structures commented?
	
	

	
	 146
	Is the purpose of each routine commented?
	
	

	
	 147
	Are other facts about each routine given in comments, when relevant, including input and output data, interface assumptions, limitations, error corrections, global effects, and sources of algorithms?
	
	

	
	 148
	Is the purpose of each file described?
	
	

	
	 149
	Is the author’s name in the listing?
	
	

	
	n
	Add any others you like
	
	

	

	
	13. Action Items and improvement recommendations
	Page/Para
	Reviewer
	Priority
	Suspense
	Closed Date

	
	1
	
	
	
	
	
	
	

	
	2
	
	
	
	
	
	
	

	
	.
	
	
	
	
	
	
	

	
	n
	
	
	
	
	
	
	

	

	
	14. Names of Rrviewers / office
	

	
	#
	
	Role
	Date Reviewed
	Time Spent
	

	
	1
	
	
	
	
	

	
	2
	
	
	
	
	

	
	.
	
	
	
	
	

	
	n
	
	
	
	
	

	

	
	15. Summary of Results
	

	
	Results by
	Reviewers opinion of meeting criteria (Y/N)
	

	
	Criteria
	#1
	#2
	#3
	#4
	#5
	#6
	#7
	#8
	

	
	1
	
	
	
	
	
	
	
	
	

	
	2
	
	
	
	
	
	
	
	
	

	
	.
	
	
	
	
	
	
	
	
	

	
	n
	
	
	
	
	
	
	
	
	

	

	
	16. Facilitator recommends a Follow-up Review: Yes / No Recommended date _______________
	

	

	
	17. SPAR Review:____________________
	Date:______________________
	
	
	

	

	
	Instructions for using this checklist are in the Peer Review procedure [RVPR003]
	

1

