SWGD001 Extreme Programming Guide
13 Aug 2003

Extreme Programming Guide

Kent Beck, one of the originators of XP, described XP as a lightweight methodology for small-to-medium-sized teams developing software in the face of vague or rapidly changing requirements. Ron Jeffries, another originator of XP, describes XP as a discipline of software development based on values of simplicity, communication, feedback, and courage. The purpose of this document is to briefly describe XP and show how to integrate XP with the SSG Systems Engineering Process (SEP). This guide is divided into three sections:

Extreme Programming Defined - the core practices of extreme programming

Extreme Programming Process - the extreme programming process in increasing detail

Extreme Programming and the SEP - integrating extreme programming into the SEP

1.0 Extreme Programming Defined

XP is a relatively new and controversial methodology. Discussions on Internet news groups passionately attack and defend XP regularly. XP clearly has some controversial practices and the decision to adopt it should be carefully considered. There is an abundance of information about XP. Our document outlines some of the key points of XP. Users of XP should supplement this document with other XP sources of information. Three excellent Internet sites are:
[http://www.extremeprogramming.org]
[http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap]
[http://www.xprogramming.com/]
In addition, we have the following three books about XP in the SEPG library:

 a. Extreme Programming in Practice by Newkirk and Martin

 b. Planning Extreme Programming by Beck and Fowler

 c. Extreme Programming Installed by Jeffries, Anderson and Hendrickson

XP is based upon four values: communication, simplicity, feedback, and courage. It stresses continual communication between the customer and development team members by having an on-site customer as a member of the development team while development progresses. An XP project is organized to minimize the cost of communication. The XP team is usually not larger than 10 members located in one large room. The on-site customer decides what will be built and in what order. Continually refactoring code and producing a minimal set of non-code artifacts addresses simplicity. The XP team only creates documentation that the team needs for development. Many short releases and continual unit testing are the feedback mechanisms. Courage means doing the right thing, even when it is not the most popular thing to do. Courage means being honest about what you can and cannot do.

The primary goal of XP is to deliver an acceptable executable software system as efficiently as possible. The team collects requirements in the form of user stories and the customer representative adds detail to those stories when needed during construction. XP requires planning to associate the user stories with iterations and iterations with releases. User stories are reduced to tasks. The software development plan involves the assignment of resources and the ordering of the tasks. The software development plan is tracked and modified daily on a whiteboard. The design is in the programmers’ minds, in unit tests and in code.

XP can be characterized by a group of core practices known as whole team, planning game, small releases, customer tests, simple design, design improvement, test first development, pair programming, collective code ownership, coding standard, continuous integration, metaphor and sustainable pace.

2.0 Whole team

In Extreme Programming, every contributor to the project is an integral part of the whole team. The customer representative is at the center of the team and works with the XP team daily. The customer representative knows the application domain, provides the requirements detail and prioritizes the requirements. Other team roles include developers, testers, analysts, coach and manager. Testers help the customer define the function and system tests. Analysts help the customer define the requirements and may participate in the function and system tests. The coach helps the team stay on track and facilitates the process. The coach roughly resembles a proactive SPAR, more of a facilitator than a checker. The manager provides resources, communicates externally and coordinates activities. Developers design, code and extensively unit test. The best teams do not have specialists, just contributors with special skills. One person can assume multiple roles and everyone on the XP team contributes in any way they can.

3.0 Planning game

3.1 Extreme Programming teams use a simple form of planning and tracking to decide what should be done next and to predict when the project will be done. Planning is based on the analysis of user stories. Each user story is a short description of the system from the perspective of the user of the system. If documentation or other tasks or services are required for the release, user stories are generated that require them. Focused on business value, the team produces the software in a series of small, integrated releases that pass all the tests the customer has defined.

3.2 Planning emphasizes steering the project rather than making exact predictions on schedule and cost. Planning determines what will be done next (Iteration Planning) and predicts what will be done by the release date (Release Planning). Iterations typically last two weeks and releases take about two to three months.

3.3 During Release Planning, the customer presents user stories to the developers who estimate the cost of a user story in ideal days and identify any risks associated with the user story. An ideal day is an eight-hour workday without interruptions. Developers will take a certain number of real days to accomplish one ideal day and they refer to this as their velocity. User stories that require too many ideal days may be divided into smaller user stories. Any time there is uncertainty in the technical approach to implement a user story, a throwaway prototype should be generated to allow better estimates. Based on cost estimates, velocity, customer priorities and identified risks, the customer lays out a plan for assigning the user stories to iterations.

3.4 During iteration planning, the customer identifies the stories that will be developed based on the cost estimates and the measured velocity. Only the first iteration uses an estimated velocity. These stories will not be changed until the iteration is finished. The Developers divide the stories into tasks, estimate the costs of the tasks, and assign the tasks. These tasks are usually one to three ideal days depending on the velocity. Any dependencies in the tasks are considered in planning the iteration.

4.0 Small releases

The Developers release executable code to the customer at the end of an iteration. Iteration delivery dates should never be slipped. The customer can use this code any way they want. The customer can have end users evaluate the code. An iteration represents an increase in the business value of the code based on the customer’s priority for the user stories and the executable code demonstrates tangible progress in the project. Also, the whole team develops releases for the end user. In the SSG environment, the release will follow the normal release procedure going to SSG Quality Assurance Test and Evaluation for QT&E I.

5.0 Customer tests

At the end of each iteration the customer should run automated function and system tests that were developed during the iteration. These tests will be used as regression tests for all subsequent iterations. Any defects found in these regression tests are treated as new user stories and assigned estimated costs. The customer usually schedules defects exposed by the function and system tests into the next iteration, but it is the customer’s decision.

6.0 Simple design

6.1 In extreme programming design is generally not done up-front, it is continuous. The design matches the functionality being implemented. As an iteration starts, just the design necessary to implement the user stories in the iteration is considered. The approach of creating the simplest system for the current iteration means do not design additional functions that aren’t used in the iteration or create structures or algorithms that are more complex than currently needed in the iteration.

6.2 A metaphor, common vision of how the program works, could be considered as up-front design. Design is implicit in release planning and iteration planning when considering how to implement user stories to determine the cost. Teams engage in quick design sessions during construction to determine interfaces and strategy. Primarily, the design is in the developer’s minds and the code and extensive testing is used to keep the design consistent. However, if the team decides that some recorded design information makes the team more productive, they can generate some design documentation.

7.0 Design improvement

Extreme programming uses a process of continuous design improvement called refactoring. Refactoring is the process of improving the internal structure of the code while preserving its external behavior. Since the construction has been guided by simple design, early decisions usually need to be revised. In general, the revisions should be aimed at reducing duplication, increasing cohesion and lowering coupling. One of the challenges in refactoring is preserving external behavior. A comprehensive testing approach is required to make sure that refactoring does not introduce defects while improving the design.

8.0 Test first development

In the Test first development process, developers write a test first and then write the code to satisfy the test. These tests are automated and collected together as a group of unit and integration tests used in regression testing. Every one of these tests must run correctly whenever new code is integrated into the system. These tests provide immediate feedback indicating that new code added to the system or refactored code works correctly and has not added defects to another part of the system. Usually a testing framework is used to organize and execute the automated tests. A number of testing frameworks for a wide variety of languages can be found at [http://www.xprogramming.com/software.htm].

9.0 Pair programming

Developers working in pairs on the same computer create code, tests and other artifacts. The paired developers share the same keyboard, mouse and terminal. Pairing assures that everything developed is peer reviewed. Separate peer reviews of products developed using pair programming is not required. Research has shown that pair programming produces better code in about the same time as two programmers working separately. In addition, pair programming also serves to communicate knowledge throughout the team. Pairs switch often allowing developers to learn specialized knowledge and improve their skills. It usually takes a few weeks for developers to become comfortable with the pair programming approach. Generally, one developer concentrates on tactically producing the product while the other developer concentrates on the strategic interactions of the product with the rest of the system.

10.0 Collective code ownership

The code belongs to the whole team. Any programming pair can change any code at any time. For example, if during construction, a pair programming team needs to change an interface or the implementation of a method, collective code ownership means that they own the other interface or method and should make the necessary changes. No one should have to wait until someone else has free time to fix something. Of course, before the code is integrated back into the system, it still needs to pass all the unit tests.

11.0 Coding standard

Since collective code ownership implies everyone must be able to read the code generated by the rest of the team, everyone needs to code to a coding standard. In general, the standard is selected by the team and may be modified by the team based on their experience. The standard is an informal document with enough detail to assist the developers. Some of the items that should be considered in the standard are indentation, capitalization, commenting, module or method size and names.

12.0 Continuous integration

Extreme Programming integrates the code as often as possible. The minimum is usually once a day and it is suggested that integration of code occur several times a day. One key to continuous integration is to keep the build time very low. The team may have to adopt strategies to reduce the build time. Some examples are: keep inter-file dependencies low; use dynamic loading where possible; and build Dynamic Linked Libraries wherever possible. Another key to continuous integration is the generation of code in very small chunks. Extreme programming does not support checking out modules for a few days worth of refactoring and additions. Code must be checked into the system at least once a day.

13.0 Metaphor

At the beginning of the project develop a metaphor that presents a common vision explaining how the system works. For example, a supply system may be viewed as a warehouse that receives orders for products from retail customers and orders products from wholesale customers. The team may not succeed at this and it is possible that an analogy may not be obvious. A good metaphor helps the customer and developers communicate, and provide a basis for creating names of the objects in the system.

14.0 Sustainable pace

Work at a pace that can be sustained indefinitely. While some overtime may be reasonable periodically, extreme programming teams have found that quality suffers under the burden of excessive overtime. A general rule is typically to work a forty-hour week and always follow one week of overtime by a forty-hour week.

15.0 Extreme Programming Process

The website [http://www.extremeprogramming.org/] contains some diagrams that capture the extreme programming process and illustrate it in several increasing levels of detail. The diagrams below are some slightly redrawn versions of their diagrams and the brief explanations in this guide can be expanded by looking at the website.

[image: image1.wmf]Release

Plan

Latest

Version

Extreme Programming (Project)

User Stories

Architectural

Spike

System

Metaphor

Release

Planning

Iteration

Acceptance

Tests

Small

Releases

Customer

Approval

Requirements

New User Story

Project Velocity

Test Scenarios

Bugs

Uncertain

Estimates

Confident

Estimates

Next Iteration

Spike

Figure 1

15.1 Explanation of Figure 1

15.1.1 The user stories are the requirements that drive release planning. The team also needs a system metaphor to illustrate the essential objects and data flow in the application. In considering the cost in ideal days of the user stories, the team also considers how the implementation of the user story relates to the system metaphor. If there are questions about the user story or its implementation, a spike (throw away prototype) can be created to improve the estimate. Based on the developers’ analysis of the cost and risk for the user stories and the customer’s priority, the customer assigns user stories to releases and to iterations within the release. The project velocity and the number of paired programmers determine the organization of the user stories in an iteration and the number of iterations in a release.

15.1.2 The release plan determines the work to be accomplished in the next iteration. The details of the iteration will be explained later. The output of an iteration is integrated with the previous version of the application and passed to the customer for acceptance tests. At the end of an iteration, new user stories may be generated and a new project velocity based on measurements may be calculated. In addition, some parts of partially implemented old user stories and bugs from acceptance tests can be treated as new user stories. The combination of user stories and project velocity adjustments may cause release planning to be updated before the next iteration.

15.1.3 Acceptance tests are generated from the customer and are based on the user stories. Acceptance testing usually occurs concurrently with the next iteration. Bugs found during the acceptance tests are brought to the attention of the developers working on the next iteration and may either be resolved there or passed back to release planning. If the customer approves of the quality of the tested system and decides that sufficient business value has been added, the customer can request a release. Otherwise, the next iteration continues.

[image: image2.wmf]Release

Plan

Latest

Version

Extreme

Programming

(Project)

Use

Cases

Prototype

Architecture

Preliminary

Design

Priority,

Cost, Risk

Iteration

FST

Small

Releases

(Ready for

QT&E I)

Customer

Approval

Requirements

New

Use Case

Earned Value

FST Test Scripts

Bugs

Uncertain

Estimates

Confident

Estimates

Next

Iteration

Prototype

Figure 2

15.2 Explanation of Figure 2

15.2.1 There are a number of terms in the SSG SEP that are similar to extreme programming and Figure 2 replaces some of the extreme programming terminology by SSG SEP terms. User stories are similar to parts of use cases and are sometimes referred to as application features. The release planning identifies the cost, priority and risk, when risk exists with the user stories. In extreme programming approaches, the user stories are generated on index cards. The idea is to indicate that these user stories are neither stable nor complete and that creating a formal document for requirements is not an efficient use of time. However, the same approach with any tool that allows user stories to be quickly updated and sorted by cost and priority would be equivalent to index cards. New or updated user stories or use cases can be added at the end of any iteration.

15.2.2 If there are questions about the cost of the implementation for a user story, release planning encourages a spike or prototype for the user story.

15.2.3 The extreme programming metaphor is similar to a prototype or high-level architecture with an informal preliminary design replacing the system metaphor. The main idea is to start with a big picture that is understood by the developers to provide some direction for the solution.

15.2.4 The project velocity that determines the number of real days it takes to do an ideal day of work can be calculated at SSG by using the earned value system. In the schedule, each requirement in the iteration or the iteration itself can have its own cost accounting number and be budgeted a certain number of real days. When the project personnel charge their time to the appropriate number, the system will accumulate the actual charges. At the end of an iteration the actual charges will be available to calculate a new project velocity. The software project manager may decide not to use the labor accounting system to keep track of actual charges at the requirement level. In that case, the software project manager must create a process for accumulating the actual charges. As our experience at SSG with extreme programming projects grows, we will determine a best practice for calculating the project velocity.

15.2.5 The acceptance tests in extreme programming are equivalent to function and system tests in the SEP. However in extreme programming, all of the testing must be automated. Constant regression testing of both the unit and integration tests by the developers and the function and system tests by the customer assure that the design and code do not introduce new defects while refactoring existing code or integrating new user stories in subsequent iterations.

15.2.6 Finally, in the SSG environment, the release does not go to the customer, but to SSG Quality Assurance Test and Evaluation for QT&E I and then through the SSG normal release procedure.

[image: image3.wmf]Iteration

Release

Plan

Next

Iteration

Earned

Value

Iteration

Planning

Iteration Plan

Development

Latest Iteration

Use Cases

Unfinished Tasks

Day by Day

Bugs

Failed

FSTs

New

Functionality

Bug

Fixes

New Use Cases

Adjusted Earned Value

(back to release planning)

Figure 3.

15.3 Explanation of Iteration, Figure 3

15.3.1 In Figures 1 and 2, there is a box titled Iteration. Figure 3 is an expansion of the Iteration box. Iteration planning takes the use cases identified in the Release plan and the failed Function and System Tests that the customer has identified and plans the next Iteration using the project velocity based on the previous earned value calculations. The Iteration plan is really a refinement of the Release Schedule. The User Cases and failed Function and System Tests are divided into tasks with associated costs. Any task dependencies are identified. Just as release planning undergoes updates, based on the results of iterations and updated user stories, iteration planning can be updated by results from development and these are usually in the form of unfinished tasks.

15.3.2 Development constructs the tasks outlined in the Iteration Plan and produces the Latest Iteration. The Details of Development will be discussed later. The Latest Iteration is produced by constructing code that adds new Functionality or Bug Fixes from failed Function and System Tests. During the Development, progress is tracked by the team to determine which tasks are done, which are left, which developers have too much to do or too little to do and every day there is a stand up meeting to discuss the progress and assignments. Often Development will provide insight leading to new user stories and the accumulated charges will be used to produce a new project velocity.

[image: image4.wmf]Development

Iteration

Plan

Stand Up

Meeting

Next Task or

Failed FST

Collective

Code

Ownership

Tasks

Too Much To Do

Failed

FST Tests

New

Functionality

Bug

Fixes

Learn and Communicate

Day by Day

Unfinished

Tasks

100% Unit

Test Passed

Pair Programming

Refactor Mercilessly

Move People Around

Internal Interfaces

(back to

iteration

planning)

Report

FSTs

Passed

Figure 4.

15.4 Explanation of Development, Figure 4

15.4.1 In Figure 3, there is a box titled Development. Figure 4 is an expansion of the Development box. Each day there is a Stand-Up Meeting to plan the activities of the day. The inputs from the Iteration plan consist of a set of tasks and Failed FST Tests with their associated estimates of effort in ideal days. The developers provide information about the status on the tasks that they are working. The Stand-Up Meeting results in assigning team resources to tasks and identifying tasks that need to be returned to Iteration Planning because they will not be finished in the current iteration.

15.4.2 Collective Code Ownership involves the lowest level construction of the tasks. The Details of Collective Code Ownership are discussed later. Collective Code Ownership has work assignments as input and produces new functionality as output. The integrated system consisting of the last successful integration and the new functionality must pass all of the unit and integration tests for the whole system before the integrated system is accepted. If one of the tasks in the new integrated system was supposed to fix a failed Function and System Test, then the Function and System tests that previously failed are executed on the new last successful integration. Collective Code Ownership also provides feedback to the Stand-Up Meeting on progress and problems.

[image: image5.wmf]Collective Code Ownership

Create a

Unit Test

Script

Passed Unit

Tests

Pair

Programming

Failed Unit

Tests

Next Task or

Failed FST

Internal

Interfaces

Pair

Up

Complex Problem

Simple Design

Continuous

Integration

FST Passed

100% Unit

Test Passed

Refactor (Redesign)

Mercilessly

Simple

Code

Complex

Code

New

Functionality

New Unit

Tests

Move People

Around

We Need Help

Change

Pair

Run All Unit Tests

Run Failed

FST Tests

Figure 5.

15.5 Explanation of Collective Code Ownership, Figure 5

15.5.1 In Figure 4, there is a box titled Collective Code Ownership. Figure 5 is an expansion of the Collective Code Ownership box. If the new work involves interactions across several modules, an analysis of the internal interfaces to create a design to guide the changes may be sensible. Then developers pair up to create a unit test that determines if a small part of the functionality is satisfied. After the test is created, the pair constructs that small part of the functionality and uses the unit test to determine when they have completed that function. The pair continues to construct unit test for other parts and to construct those parts until the task is complete.

15.5.2 Part of the pair programming effort may involve refactoring code that they or some other pair previously created. In addition, if the pair has problems, they may change their roles or change one or both participants in the pair. When the new functionality is ready, the functionality and the unit tests are integrated with the previous system and the previous unit tests. All the unit tests, both the new ones and old ones, must run correctly. If the new functionality was supposed to fix a Function and System Test problem, then the failed Function and System Tests are also run on the new integrated system.

Extreme Programming and the SEP

[image: image6.wmf]Extreme Programming

SEP

GLOBAL

PROCEDURES

Supplier/

Agreement

Management

Software

Configuration

Management

Project

Monitoring and

Control

Organizational

Process

Definition

Process/Product

Quality

Assurance

Verfication

Validation

Training

EXTREME PROGRAMMING ITERATIONS

FBL

PBL

CDR

Test

Readiness

Review II

Iteration

Baselines

Risk

Management

Release Review

RELEASE

PLANNING

EXTREME DEVELOPMENT

RELEASE COMPLETION

RELEASE SUPPORT

User Stories w Costs,

Priority and Risks

SSCE for Estimate

C4RD

User Stories in

DOORs

SDP

--

Customer

Agreement for Extreme

Programming

Designate on

-

site

Customer as the FRB

and the CCB

SCMP

-

Informal for TEAM

Coding Standards

-

Informal

Source Code

Unit Test Description

Unit Test Report

Function and System Test Description

Function and System Test Report

Tailoring Worksheet

Microsoft Project Schedule

Project Training Plan

IRA

TP

-

Partial and Final

Release

Pkg

(Draft)

SSAA

Pkg

Users Manual

Operators Manual

IP

ConOps

SSS

SRS

DS

DD

RTM

Software Development Folders

QT&EI Test Report

QT&EII Test Report

Release Package (Final)

QOT&E Test Report

Training Services

FCA/PCA

New Requirements

Iterations

Decision Analysis & Resolution

Measurement & Analysis

Requirements

Development

Figure 6.

15.6 Explanation of SEPXP, Figure 6

SEPXP has four phases: Release Planning corresponding to the SEP phase Requirements Evaluation & Proposal; Extreme Development corresponding to the SEP Phases Analysis through Construction and including Function and System Testing at the start of the Test Phase; Release Completion corresponding to the rest of the SEP Test Phase and the Implementation Phase; and Release Support corresponding to the SEP Phases Customer Support and Completion. In each of these phases there are products that are created because XP requires them and other products because the SEP requires them. Most of the SEP products have been delayed until after the release to achieve the XP goal of producing the Release as efficiently as possible. The products that have been delayed are still required to achieve the SEP goal of producing a maintainable system.

16.0 Release Planning Phase

16.1 In the Release Planning Phase, the activities in the XP release planning are accomplished. The release planning activities should provide a list a user stories and for each user story a cost, priority and if they exist, any risks. The user stories are organized into Iterations and the Iterations are organized into releases. A sustainment system cost estimate (SSCE) template is sufficient to capture the detail for the estimate for management review and SPO review. At the same time that the user stories are being collected, a metaphor or high-level architecture needs to be developed to define the general approach used in the project. Of course, the SSCE should note that extreme programming would be used to achieve the solution.

16.2 As part of the SEP, an IT/NSS Requirements Document (AF Form 3215) needs to be created. The User Stories will be put in Dynamic Object-Oriented Requirements System (DOORS) although they don’t need to be organized in any particular fashion. At the end of Release Planning, the requirements in DOORS are the Functional Baseline along with the other documents that have been created. Once the Functional Baseline is approved, change control must be put in place. The customer working with the team should be designated as the Functional Review Board and the Configuration Control Board. The Software Development Plan is a statement that extreme programming is going to be used in this project and the signatures indicate approval of the extreme programming approach. Once the SSCE has been approved, the Configuration Control Board should issue a directive to start the project.

16.3 At the end of the Release Planning Phase, an end of Phase Review with a SPAR report and management review with minutes is completed.

17.0 Extreme Development Phase

17.1 In the Extreme Development Phase, the activities in the XP Iteration are accomplished. The Iteration activities include iteration planning and development. The products from the Iteration include; the source code, unit test descriptions, unit test reports, function and system test descriptions and function and system test reports. These test descriptions can consist of a brief purpose of the test and the commented code associated with an automated test. The test reports can be generated from the testing tool and may just indicate the name of the test for passed tests and more detailed information for failed tests. Test reports should indicate the date and time the tests were run and the build associated with the run. Unit test reports only need to be generated when integrating code for a new build, not when the developers are testing the code. Function and system test reports need to indicate the user story they are testing.

17.2 In the initial iteration a few artifacts need to be created for the XP Iteration: an informal configuration management plan for the developers and the informal team coding standards. In the initial iteration a few artifacts also need to be created to address SEP issues: a formal configuration management plan describing the management of the Iteration baselines presented to the SPO; a tailored worksheet; a Microsoft Project Schedule showing the products that have been created, the iterations and any products created after the release; a partial test plan indicating what tools are being used and any rules and strategies for unit tests and function and system tests; and a Project Training Plan.

17.3 During one of the Iterations before the release, some artifacts need to be created to address SEP issues: Interface Requirements Agreements (IRA) if there are any interfaces to other systems; Implementation Plan (IP); the rest of the Test Plan for QT&E I and possibly QT&E II and AFOTEC; User Manual (UM); Operator Manual (OM); Systems Security Accreditation Agreement (SSAA); and the Release Letter with Related Documents.

17.4 At the end of an iteration, the iteration is given to the SPO for Function and System testing and a new Iteration is started. At the start of the new Iteration, new and updated user stories may be added, Function and System Tests that failed are reported, unfinished tasks for this Iteration are noted and the project velocity is calculated. All the above information needs to be considered in Iteration planning for the next Iteration and depending on the effort involved in addressing that information; the development team may have to return to release planning.

17.5 At the end of one of the Iterations and the related Function and System testing, a release will be created. The release will go through Test Readiness Review II (TRR II) before it is turned over to SSG Quality Assurance Test and Evaluation. This release and all the existing documentation form a Product Baseline. The Senior Management Review of SEP Products is part of the release and will be included even though a number of products may still need to be completed at this time. The Senior Management Review of SEP Products will be updated at the end of the Release Completion Phase and turned into Quality Assurance Test and Evaluation as part of the release package.

17.6 At the end of the Extreme Development Phase, an end of Phase Review with a SPAR report and management review with minutes is completed.

18.0 Release completion phase

18.1 During the Release Completion Phase, the project supports SSG Quality Assurance Test and Evaluation and addresses issues that occur. SSG Quality Assurance Test and Evaluation produces QT&E I test report and possibly the QT&E II test report and the QOT&E test report.

18.2 The Development team and SPO create the following as built documents to address SEP issues: General Requirements Specification (GRS), Concept of Operations (ConOps), System Subsystem Specification (SSS), Software Requirements Specification (SRS), Database Specification (DS), Design Document (DD), Requirements Traceability Matrix (RTM) in DOORS, Software development folders, Finalize the Release Package, Training Services, and the Functional Configuration Audit/Physical Configuration Audit (FCA/PCA). Most of these documents would have been finished before the release on other tracks, but on the extreme programming track, they are finished during and after the release. The documents listed above from the ConOps through the Software Development Folders are placed in the Product Baseline.

18.3. At the end of the Release Completion Phase, an end of Phase Review, called the Release Review, with a SPAR report and management review with minutes is completed. The updated Senior Management Review of SEP Products will be completed and turned into Quality Assurance Test and Evaluation as part of the Release Review.

18.4 While there is no fixed time for completion of the Release Completion Phase, the Release Completion Phase will be terminated when a new Extreme Development Phase for the next release of this project begins. At that time, a Release Review for the previous release will be conducted.

19.0 Release support phase

The Customer Support and Completion Phase in the Release Support Phase has not been changed.

Page 11 of 12

_1129965006.ppt

Extreme Programming

SEP

GLOBAL

PROCEDURES

Supplier/

Agreement

Management

Software

Configuration

Management

Project

Monitoring and

Control

Organizational

Process

Definition

Process/Product

Quality

Assurance

Verfication

Validation

Training

EXTREME PROGRAMMING ITERATIONS

FBL

PBL

Test

Readiness

Review II

Iteration

Baselines

Risk

Management

Release Review

RELEASE

PLANNING

EXTREME DEVELOPMENT

RELEASE COMPLETION

RELEASE SUPPORT

User Stories w Costs,

Priority and Risks

SSCE for Estimate

C4RD

User Stories in DOORs

SDP -- Customer

Agreement for Extreme

Programming

Designate on-site

Customer as the FRB

and the CCB

SCMP - Informal for TEAM

Coding Standards - Informal

Source Code

Unit Test Description

Unit Test Report

Function and System Test Description

Function and System Test Report

Tailoring Worksheet

Microsoft Project Schedule

Project Training Plan

IRA

TP - Partial and Final

Release Pkg (Draft)

SSAA Pkg

Users Manual

Operators Manual

IP

ConOps

SSS

SRS

DS

DD

RTM

Software Development Folders

QT&EI Test Report

QT&EII Test Report

Release Package (Final)

QOT&E Test Report

Training Services

FCA/PCA

New Requirements

Iterations

Decision Analysis & Resolution

Measurement & Analysis

Requirements

Development

CDR

