SWGD002 Software Engineering Guide
20 Aug 2002

Software Engineering Guide

1.0 Software Development Life Cycle Strategies

1.1 Introduction

There are several software development life cycle strategies. This section describes the Grand Design (Waterfall), Incremental, Evolutionary, Spiral, Timebox, and Prototyping strategies. The Extreme Programming strategy is described in a separate guide. A program/project manager should select a software life cycle strategy based on the nature of the program and application, the methods and tools to be used, and the required controls and deliverables. The selected life cycle strategy should be coordinated with the customer and senior management and be reflected in the Release Schedule.

1.2 Grand Design, Waterfall, or Phased

1.2.1 Description

The grand design (or "waterfall") strategy is an older program strategy. This strategy was conceived during the early 1970s as a remedy to the undisciplined code and fix method of software development. It is a "once-through, do-each-step once" strategy. In grand design, each process is performed in sequence, and each process is completed before proceeding to the next process in the sequence. For example, analysis and design do not begin until project plans are prepared, reviewed, and complete. Likewise, construction does not begin until the analysis and design phases are complete.

1.2.2 Advantages/Disadvantages

Grand design provides a structured, disciplined method for software development, and can be useful for maintenance projects, and small, new starts with clearly defined and understood requirements. However, for other types of development, grand design can prove to be a risky and inflexible strategy. With only a single pass through the process, integration problems often surface too late in development, and a completed product is not available until the very end of the process. The long period between project start and product delivery can discourage customer involvement and lead to a system, which does not meet changing customer requirements.

1.2.3 Implementing this Strategy with the SEP

The layout of the SEP lends itself to easy implementation of the grand design. A project performs each SEP process in sequence, and completes each process continuing with the next process. Each release’s High Level Schedule, and eventually the Release Schedule, is built to reflect this one-time sequence of SEP processes.
1.3 Incremental

1.3.1 Description

Incremental development (also known as "pre-planned product improvement") involves dividing a system up into multiple "builds" (or releases) and developing the system one release at a time. A project performs project planning and requirements analysis one time only, and then repeats the design, construction, and testing processes multiple times to develop each build of the system. The first build of the system incorporates a subset of the planned capabilities; the next build adds another subset of the planned capabilities, and so on, until the system is complete. The program/project manager must work with the customers to determine the number, size, and schedule of the builds that will lead to a complete system.

1.3.2 Advantages/Disadvantages

An incremental development strategy is most appropriate for large, new systems where system and software requirements are fully defined and clearly understood. The primary advantage of this strategy over the grand design strategy is the use of multiple development cycles. This allows the customer to interact with an actual system much sooner and provide feedback to the developers. The main disadvantage to the incremental strategy is its dependence on having clearly and completely defined system and software requirements at the beginning. It does not allow programs to respond easily to changing requirements.

1.3.3 Implementing this Strategy with the SEP

To implement incremental development using the SEP, a program/project manager coordinates with the customer to determine the number, size, and schedule of incremental builds. A project performs one Requirements Evaluation and Proposal Phase, one Project Planning Phase, and one Analysis Phase. Then the project incrementally designs, constructs, and tests each CI or software unit. The Release Schedule is built to reflect this arrangement of SEP processes.

[image: image1.wmf]

Build 1

Build N

Requirements

Evaluation and

Proposal

A

nalysis

Project Planning

Design

Construction

Testing

Implementation

Limited

-

Capability

System

Design

Construction

Testing

Implementation

Full

-

Capability

System

Figure 1 -- Incremental Development

1.4 Evolutionary

1.4.1 Description

The evolutionary development strategy is similar to the incremental approach. The primary difference is that a program/project using the evolutionary strategy repeats the Analysis Phase more than one time and you produce and deliver a program at successive levels of completeness, and each level is a version of the program that’s to some extent usable. As with the incremental strategy, a project progresses through multiple development cycles and produces multiple builds. The first build produced is an Operational Prototype (OP) that meets the initial set of functional, system, software requirements. Based on customer feedback, the project repeats the analysis, design, construction, testing, and implementation processes to produce a second OP that meets the more clearly defined functional, system, and software requirements. This process continues until the requirements are fully defined and understood and a final system may be produced. The program or project manager must work with the customers to determine the number, size, and schedule of the builds that will lead to a complete system. For more in-depth discussion regarding prototyping, see section 2.0.

For example, if you were developing a spreadsheet program, you could plan several levels of releases:

 a. Delivery 1 - The basic interface is available. Arithmetic calculations work. Simple data entry is supported, but many more sophisticated data-entry functions are available. The first delivery is the core of the product you will ultimately deliver. Subsequent releases add more capabilities in a carefully planned way.

 b. Delivery 2 - Formulas and more sophisticated data-entry functions are available.

 c. Delivery 3 - The ability to save and load files is available.

 d. Delivery 4 - Database operations are available.

 e. Delivery 5 - Graphing capabilities are available

 f. Delivery 6 - Interfaces to other products (databases, ASCII text files, other spreadsheets) are available. The project is fully functional.

 g. Delivery 7 - The performance-tuned product is available. Performance bottlenecks in the previous versions have been identified and ameliorated.

 h. Delivery 8 - The fully system-tested product is available.

1.4.2 Advantages/Disadvantages

Evolutionary program strategies are particularly suited to situations where, although the general scope of the program is known, functional and detailed system and software requirements are difficult to articulate, define, or qualify. This is usually the case with software-dominated decision support systems that are highly interactive and have complex human-machine interfaces. There are a couple of drawbacks to the use of the evolutionary strategy: 1) customers or users might prematurely accept one of the OPs as the final system, and 2) because evolutionary development involves an ongoing requirements process, it is easy for a project to experience "scope creep" and allow additional and expanding requirements to delay or increase the cost of development. It is important that the customer is aware of this potential. By close tracking of actual progress against the approved, baselined schedule, the Project Manager should be able to predict when scope creep will cause his project to overrun. At this point, a renegotiation of the agreement is warranted.

1.4.3 Implementing this Strategy with the SEP

To implement incremental development using the SEP, a program or project manager coordinates with the customer to determine the number and schedule of OPs to be released. A project first performs the Requirements Evaluation and Proposal and Project Planning Phase. Then the project analyzes, designs, constructs, tests, implements, and evaluates a series of OPs. Finally, when the requirements are fully defined and understood, the project develops the final system. The Release Schedule reflects this arrangement of SEP processes.

[image: image2.wmf]Build 1

Requirements

Evaluation and

Proposal

Project Planning

Analysis

Design

Construction

Testing

Implementation

Operational Prototype

Evaluation

Build N

Analysis

Design

Construction

Testing

Implementation

Complete System

Figure 2 -- Evolutionary Development

1.5 Spiral

1.5.1 Description

Spiral development, developed by Barry Boehm, is a risk-reduction approach to software development. It is a repetitive process consisting of four main activities: planning, analyzing risk, engineering, and reviewing. The diagram below is a variation of spiral development created by TRW. In this diagram, the radial indicates the current phase or process in the development life cycle, while the angular distance represents the progress made within that particular phase or process.

1.5.2 Advantages/Disadvantages

Spiral development emphasizes evaluation of alternatives and risk assessment. These are addressed more thoroughly than with other strategies. A review at the end phase ensures commitment to the next phase or identifies the need to rework a phase if necessary. The advantages of spiral development are its emphasis on procedures, such as risk analysis, and its adaptability to different development approaches. If spiral development is employed with demonstrations and baselining/configuration management, you can empower continuous customer buy-in and established a disciplined process.

1.5.3 Implementing this Strategy with the SEP

Fundamental tenets of the spiral development strategy have already been incorporated into the SEP and can be applied to any of the other development strategies.

[image: image3.wmf]FCA/PCA

Needs

Analysis

Risk

Analysis

Conceptual

Prototyping

Enhanced

Operational

Capability

Integration,

and

Training

Planning

CSCI

Integration

and

Test

Site

Activation

Training

Planning

Design

and

Development

Transition

Planning

Engineering and

Project

Planning

Concept of Operation

System Software

Specification

Demonstration

Prototyping

Update Project Indicators

Qualification

Testing

User

Acceptance

Test and

Training

Formal

Testing

Integration

and Test

Unit

Test

Detailed

Design

Code

Simulations, Models,

and Benchmarks

Updated

Detailed

Design

Unit

Test

Integration

and Test

Software

Architecture

and

Preliminary

SDDs

Software

Requirements

Specification

Updated

System

Software

Specification

Risk

Analysis

Risk

Analysis

Risk

Analysis

Risk

Analysis

System/

Product

Objectives,

Alternatives,

and

Constraints

Design

Objectives,

Alternatives,

and

Constraints

Implementation

Objectives,

Alternatives,

and

Constraints

Support

and

Maintenance

Objectives,

Alternatives,

and

Constraints

Design

Assessment

Prototyping

Operational

Prototyping

Updated

Operational

Prototyping

Product

Review

Design

Review

Rqmts

Review

System

Review

Code

DETERMINE OBJECTIVES,

ALTERNATIVES, AND

CONSTRAINTS

EVALUATE ALTERNATIVES,

IDENTIFY AND RESOLVE RISKS

PLAN NEXT PHASE

DEVELOP NEXT PHASE

IOC

FOC

Activation

Figure 3 - Spiral Model

1.6 Timebox

1.6.1 Description

 a. The Timebox Development is a construction phase practice on the new start track (or a development phase practice on the sustainment track) that infuses a development team with a sense of urgency and keeps the project’s focus on the most important features. The Timebox Development redefines the product to fit the schedule rather than redefining the schedule to fit the product. The success of the Timebox Development depends on using it on projects that have relatively independent requirements (Sustainment Systems usually have this feature) and the customer’s willingness to cut features rather than stretch the schedule.

 b. In the Timebox Development, you specify the maximum amount of time that it will take to release the next version of the system. Any type of system can be developed, but the evolutionary and incremental methodologies seem to fit the Timebox Development methodology particularly well. The main feature of the Timebox Development is that the development is constrained to a fixed amount of time. Developers implement the most essential features first and the less essential features as time permits. It needs to be clear to the developers that whatever is completed at the end of the Timebox is what will either be put into operation or rejected. There are no deadline extensions. The system grows like an onion with the essential features at the core and the other features in the outer layers. Construction consists of developing a prototype and evolving it into the final system. The Timebox Development paradigm is illustrated in Figure 4.

 c. Timebox Development is not suited for all projects. The project must have the following characteristics: 1) a prioritized list of requirements, 2) a minimal core set of requirements that can be developed within the Timebox time frame, 3) relatively independent requirements (that is, it is possible to produce a useful release with a subset of the requirements), 4) an estimated realistic schedule created by the development team, 5) sufficient customer involvement to support prompt feedback, 6) a Timebox timeframe of usually 3 to 6 months, 7) a customer committed to cut features instead of quality.

1.6.2 Advantages/Disadvantages

 a. The Timebox Development has the potential to reduce a normal schedule. It has a good chance of success the first time it is used and an excellent chance of long-term success. Not all projects are suitable for Timebox Development. Timebox emphasizes the priority of the schedule. Timebox prevents projects from being almost complete for an excessive amount of time. Timebox clarifies the priorities of requirements and controls requirements creep. Timebox provides a sense of urgency and motivates the development team.

 b. The customer must be able to make quick decisions on cutting requirements. The customer must be committed to cut requirements instead of quality. Timebox is recommended for the construction phase and the phases following, not the upstream phases such as analysis or preliminary design.

1.6.3 Implementing this Strategy with the SEP

The layout of the SEP is currently structured to support the management of releases. In the Timebox Development, the requirements within a release are managed. This will require some careful tailoring and may need to be supported by planning and accounting procedures in addition to those normally used as part of the SEP. Sustainment systems have many of the features that suit Timebox Development.

Proposal

[image: image4]
Figure 4 - Timebox Development

1.7 Summary

Selecting an appropriate SDLC methodology is not always an easy task. All strategies presented here have unique advantages and limitations that must be considered in their selection. Current direction from ESC headquarters indicates that programs should use a spiral, evolutionary strategy for systems development.

2.0 Prototyping and Simulation

2.1 Overview

 a. Prototyping is technique that allows the customer to look at alternatives and is encouraged when requirements are uncertain. It can be used with any development life cycle strategy and is strongly encouraged when embarking on an evolutionary or spiral development. Prototyping uses initial customer requirements (gained from customer and analyst insight and interaction) to quickly develop a basic system model. The customer then responds to the prototyped system, and the prototyped system is modified and again presented to the user. This iterative process continues until the model satisfies the customer, and the requirements are more clearly understood. Often it is not possible for the customer to articulate requirements in depth. By showing the customer alternatives to solving a problem, valuable time and resources can be conserved. Prototyping may be used with any of life cycle methodologies, although it is not suitable for all applications, and care must be taken not to allow the customer to implement a prototype designed solely for demonstration. However, if the final prototyped version is functionally accurate and properly documented, and the software is constructed properly, it may be used as the production system. If the prototype is used as a production system, all artifacts called for in the entire Systems Engineering Process must be accomplished and includes the Requirements Specification (RS), the Design Document (DD) and the Database Specification (DS); and the Test Document (TD).

 b. There are two methods of prototyping that should be used at SSG: conceptual prototyping (CP) and operational prototyping (OP). The first method, CP, involves the rapid development of a working prototype during the Requirements Evaluation and Proposal and/or Analysis Phases (Figure 5). This enables customers to evaluate whether requirements are being met and encourages customer involvement. CPs are developed and refined as quickly as possible in response to customer requirements and feedback, and formal documentation is not required. At the end of the Analysis Phase, a decision is made to keep the prototype and evolve it into a final system, or discard the prototype, formally document the requirements, and begin the Design Phase. If a decision is made to keep a prototype, then that prototype is considered to be an operational prototype, and time must be taken to formally complete requirements and design documentation (see below).

 c. The second variation of prototyping, operational prototyping (OP), can be compared to the beta testing done by commercial software development organizations. This method is used primarily with the evolutionary and spiral evolutionary development strategies to help clarify and refine customer requirements. Operational prototyping is similar in purpose to conceptual prototyping. However, operational prototype progress through formal analysis, design, and testing, are documented, and will eventually evolve into a final, production system. The primary benefit of this method is that the development time of operational prototypes can be tightly controlled and adjusted to allow periodic customer feedback and interaction with the planned system.

[image: image5.wmf]Requirements

Evaluation and

Proposal

Project Planning

Analysis

Design

Construction

Testing

Implementation

Keep or Discard

Prototype

Specify

Requirements/Design

Build Prototype

Simulate

Prototype (local)

Evaluate and Refine

Requirements

Release Prototype

Evaluate and Refine

Requirements

Figure 5 -- Conceptual Prototyping

2.2 Advantages of Prototyping

 a. Prototyping provides a method and technique for clarifying and verifying customer requirements for a system.

 b. Prototyping encourages customer and developer interaction and allows them to create, use, and modify a proposed system before obligating costly resources.

2.3 Disadvantages of Prototyping

 a. Prototypes may be produced too quickly, resulting in too little analysis during the original requirements phase. This can prevent thorough research of alternative solutions.

 b. Quick-fix methods may override the opportunity to research and innovatively solve underlying problems.

 c. Failure to develop a proper detailed system plan before prototyping individual modules can adversely affect system integration.

 d. A prototype may be decreed "operational" before completion of the development cycle and proper documentation. Incomplete documentation can lead to higher maintenance costs and interface and interoperability problems over the life cycle of the system.
2.4 Considerations for Prototyping

 a. Prototyping may make effective resource management (people, dollars, time) more difficult for managers. It often involves changes in standard development processes, procedures, and roles. Instead of the traditional customer-to-analyst-to-programmer flow, bi-directional communication between the customer and application specialists is required.

 b. Successful prototyping depends upon a strong project leader who possesses knowledge of the system and prototyping methods. It also requires a substantial amount of interaction with the most knowledgeable customers.

2.5 Procedures for Conceptual Prototyping (CP)

The prototyping process may begin in the Systems Engineering Process Requirements Evaluation Phase or the Analysis Phase. Those procedures for CPs are:

 a. The analyst determines general system and software requirements and proposes a system design. The analyst also determines software requirements and proposes a software design, all based on preliminary fact-findings and experience. This step describes an expanded list of functions, transactions, data elements, and customer procedural responsibilities. The objective is to get the model completed as soon as possible without the formalities of detailed format descriptions.

 b. The customer's concurrence with the system proposal need only be a general agreement with the proposed procedural flow and that the system will most likely meet mission needs.

 c. At this point, technical issues should be addressed. Consult with those who will code and maintain the production version of the system. Consider the programming language, file structures, protocols, and hardware assignments that will be required in the final production system. Surface and resolve possible problem areas that may occur during system construction.

 d. Build Prototype. Develop and test a baseline prototype model.

 e. Simulate the Prototype (if required).

 (1) Create a system environment to simulate the prototype. Use the simulation to ensure the prototype is comprehensive, accurate enough to be relied on, and functional enough to be useful. The simulation will allow you to analyze the system's performance and gain an understanding of the system's behavior. Timing and sizing issues must be resolved before the prototype is fielded. Specifically, the following dynamic attributes must be verified:

 (a) Interrupt handling and context switching,

 (b) Response times,

 (c) Data transfer rate and throughput,

 (d) Resource allocation and priority handling, and

 (e) Task synchronization and intertask communication.

 (2) The simulation environment must be as close as possible to the target operational environment. Numerous tools (CASE, Simulation Control Language (SCL), mathematical models, etc.) are available to assist with the simulation process.

 f. Evaluate and refine requirements based on simulation results. The results of the simulation is reviewed and discussed with the customer. The customer will refine, expand, or accept the results based on the requirements. Record all results and related changes to the functional scope of the prototype. Update all written descriptions of the prototype as applicable.

2.6 Procedures for Operational Prototyping (OP)

Same procedures as for CPs except that a period of formal testing is required.

 a. Project Office:

 (1) Submit a prototype request letter to SSG Quality Assurance Test and Evaluation Division with the information shown in the Testing Guide at least 30 days before the prototype test start date. The OPR/OCR should perform preliminary functional area (MAJCOM and base) coordination before submitting a prototype request. If the prototype activity requires additional equipment, the prototype request letter must be submitted in sufficient time to allow the test sites to concur with the test and acquire equipment prior to the test start date.

 (2) Select test locations(s). Coordinate with MAJCOMs to determine which location(s) can support the functional test requirements.

 (3) Use the Quality Control Checklist as described in the Testing guide as a test aid.

 (4) Provide SSG Quality Assurance Test and Evaluation Division all production release packages for testing 10 days before the prototype start date. Provide test sites feedback on problems/concerns identified in their test reports within 10 working days from receipt. Prototype packages will contain copies of all documentation for distribution to test sites for maximum orientation/preparation. For changes to existing manuals, type or stamp the word "Test" at the top of each page of documentation to ensure it will not be mistaken for operational documentation. Change pages and AF Form 636 should instruct test sites to retain official documentation being replaced by "test" documentation in case the prototype test is discontinued for any reason. For new or completely revised manuals, stamp "Test" only on the cover page.

 (5) Provide test sites instructions for reporting difficulties (DR, telephone calls, message, etc.) and submitting test reports (RCS: DCS-SSG (AR) 7502) by message, coordinated through SS, to provide timely, accurate results of prototype progress. See Testing Guide. Final test reports are due at SSG within 10 working days after test completion. Ensure that reports are received from test sites when appropriate.

 (6) Take corrective action and submit recycled prototype packages when problems are reported from test sites via telephone, trouble calls, DRS, or prototype test reports.

 (7) Do not compile and/or patch a source program at a test site except when authorized by SSG/Quality Assurance Test and Evaluation Division. (This would be extremely rare.)

 (8) Do not permit copies of, or access to, source code at a test site by the test site personnel unless authorized by SSG/Quality Assurance Test and Evaluation Division. (This would be extremely rare.)

 (9) Certify system development efforts that process sensitive data as directed in AFPD 33-2.

 b. Quality Assurance Test and Evaluation Division:

 (1) Ensure that the prototype request letter is properly coordinated.

 (2) Evaluate all production packages before releasing them to test sites. Complete prototype recycles evaluation and releases the recycled packages after successful evaluation. Evaluate emergency recycles and patches for prototype tests before release to the test sites.

 (3) Evaluate and refine requirements based on field results. The results of field-testing is reviewed and discussed with the customer. The customer will refine, expand, or accept the prototype as meeting stated requirements. Record all results and related changes to the functional scope of the prototype. Update all written descriptions of the prototype as applicable.

3.0 Rapid Application Development (RAD)

 a. RAD is similar to prototyping and iterative/spiral development, but with a different set of primary objectives and different test issues. The intent of RAD is fast delivery of the product: in the tradeoff of time, cost and quality. RAD has many advocates but also many detractors.

 b. RAD uses an approach of incremental product delivery, with customer feedback from on iteration setting the direction for the next iteration. Unlike prototyping, though, the result delivered in each iteration is not a working model for off-line experimentation, but will actually be utilized by the users in their daily business operations.

 c. Some advocates believe that the iterations never finish-the application continues to evolve indefinitely, in response to market demands that cannot be predicted, for years until it is finally retired.

 d. A typical RAD cycle time (also called the “timebox”) is one new system version per month. Sometimes, project teams iterate weekly or even daily, though the shorter the cycle time the more likely the process is to be unstable, i.e., the easier it is to lose control. Cycle time may even be as long as 6-month phases-this effectively is “slow RAD”.

 e. With RAD, effective delivery is expedited by several techniques:

 (1) Before the iterations of the timebox begin, conduct a brief project planning phase to establish the initial set of needs, overall objectives, project scope, success criteria, RAD tools and development methodology.

 (2) Before the iterations of the timebox begin, draft an overview of the “chunks” of functionality that are intended to be delivered in each cycle. Drafting a list of features expected in the first iteration or two is especially important, both to ensure high priority, visible functionality is delivered to build momentum and support, and to manage expectations and risks.

 (3) Before coding begins within each iteration, review the functionality to be added or modified within that iteration, and determine if it is consistent with the project objectives. Prioritize the work in terms of which features or upgrades are mandatory for this next version versus merely desirable.

 (4) Employ only the most seasoned and respected testers available.

 (5) Ensure that the designers and programmers communicate and keep the testers closely in the loop as the product evolves.

 (6) Require the designers and programmers to develop and implement their own thorough unit tests and preferably integration tests also.

 (7) Plan safety checkpoints, for example, when the number of unresolved defects exceeds a preset threshold during product evolution, place a moratorium on additional product change until the defect backlog is reduced.

 (8) Wherever possible, borrow and adapt existing test facilities, such as regression test beds, test harnesses and test cases.

 (9) Supply sophisticated debugging tools and automated test tools, to expedite the process.

 (10) Utilize volume testing, and delegate this responsibility to the clients and end users to the degree feasible. Ask the users to test in parallel as much as possible, as part of their on-going work activities, with before-and-after comparisons from iteration to iteration of the application being developed.

 (11) Keep a stringent eye on change requests and product scope: preferably, the testers should conduct an impact assessment of proposed changes and be able to veto them where justified.

 (12) Alert the users to expect some defects. Train them how to recognize and report defects in the iterations, and how to work around them.

 (13) Place each iteration of the application being developed under version control.

 (14) Do not allow a new iteration to be released without a minimal test. Identify minimal test requirements in terms of customer impact, operational risk, prior trouble spots, and what is new or changed from the last prior iteration.

 (15) Be prepared to turn-off buggy features (reduce functionality) within a release before delivery, if necessary in order to meet the timebox target date for the next iteration.

 (16) Provide mechanisms for users to easily back up to an earlier iteration, if the latest one proves to contain a showstopper.

As the application evolves through the iterations, it should become more stable. Or at least particular features or subsystems will become stable earlier than others. As portions of the system stabilize, move to more complete test case creation using automated capture/replay tools. Grow the automated test repository in parallel with the application, and use it to test from iteration to iteration those system portions that are already stable.

Do not apologize for minor defects being found by the users after release of each iteration. They are natural consequence of the fast turn-around and usually have minor consequences except to make the users gripe. The users should understand that the whole reason for iterative development is because things are rarely right the first time. Emphasize teamwork.

4.0 Adding Iterations to the SSG SEP

The SEP implicitly uses the Waterfall Development Model. While Iterations are not precluded, the SEP does not explicitly support iterations other than in this Software Engineering Guide. This section provides direction in using iterations in the SEP. An assumption in this discussion is that the test phase begins with TRR II and the FST testing is moved into the construction phase. The test phase will be referred to as the independent test phase in this guide. This does not add any products or tasks to the SEP and does not change the order that products and tasks need to be completed. However, this change terminates iterations in the construction phase instead of requiring an iteration to enter part of the test phase.

4.1 Iteration Concept

Each iteration consists of a set of procedures and their selected products in the order that they are produced in the SEP. These products are selected from the phases Construction; Design and Construction; Analysis, Planning, Design and Construction; or Requirements Evaluation and Proposal, Analysis, Planning, Design and Construction in those orders. In each iteration a set of requirements or partial requirements will be related to the iteration. Each iteration must be planned and scheduled before the iteration begins. Each iteration must be evaluated at the end of the iteration. For example, the purpose of the iteration may be to construct code that implements a particular group of requirements. The evaluation of the iteration will be the execution of Function and System Tests associated with the particular group of requirements. Another purpose of an iteration may be to create a throw away prototype that demonstrates technology (reduces risk) that will be needed to implement specific requirements. The evaluation of this iteration will be a report that describes the key issues that the prototype demonstrated and the relation of those issues to the implementation of the requirements.

4.2 Construction Phase Iterations

Sequential
 Iterations (1 or more)
Abbreviations used above are:

RE EV & Pr - Requirements Evaluation and Proposal

An - Analysis

Pl - Planning

De - Design

Co - Construction

Ind Te - Independent Test (Indicating FST is now part of Construction)

Im - Implementation

CuS - Customer Service

Cl - Closure

The iterations will cover the construction phase. This implies that the SEP products (with tailoring) through detailed design have been completed and the critical design review has been accomplished. The lists of all the products in each iteration are in the table below:

	NA
	NA
	PHASE - Construction

	3
	PD60
	 Implementation Plan (IP) and Peer Review Minutes

	3
	CD20
	 User Manual (UM)/On-line Help and Peer Review Minutes

	3
	CD30
	 Operator Manual (OM) and Peer Review Minutes

	3
	CD40
	 Trusted Facilities Manual (TFM) and Peer Review Minutes

	3
	CD50
	 Security Features User Guide (SFUG) and Peer Review

 Minutes

	NA
	C000
	PLANNING PACKAGE - Source

	3
	CD00
	 Database

	3
	C000
	 CI #1 (Use Name)

	4
	CT10
	 CI # 1 Integration Test Scripts and Peer Review Minutes

	4
	CS10
	 Module # 1(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # 1 Test

	5
	CS22
	 Unit Test Script for Module #1 and Peer Review

 Minutes

	5
	CS24
	 Unit Test Report for Module #1

	4
	CS10
	 Module # 2(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # 2 Test

	5
	CS22
	 Unit Test Script for Module #2

	5
	CS24
	 Unit Test Report for Module #2

	4
	CS10
	 Module # M(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # M Test

	5
	CS22
	 Unit Test Script for Module #M and Peer Review

 Minutes

	5
	CS24
	 Unit Test Report for Module #M

	4
	CT20
	 CI # 1 Integration Test Report

	3
	C000
	 CI #2 (Use Name)

	4
	CT10
	 CI # 2 Integration Test Scripts and Peer Review Minutes

	4
	CS10
	 Module # 1(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # 1 Test

	5
	CS22
	 Unit Test Script for Module #1 and Peer Review

 Minutes

	5
	CS24
	 Unit Test Report for Module #1

	4
	CS10
	 Module # 2(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # 2 Test

	5
	CS22
	 Unit Test Script for Module #2

	5
	CS24
	 Unit Test Report for Module #2

	4
	CS10
	 Module # M(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # M Test

	5
	CS22
	 Unit Test Script for Module #M and Peer Review

 Minutes

	5
	CS24
	 Unit Test Report for Module #M

	4
	CT20
	 CI # 2 Integration Test Report

	3
	C000
	 CI #N (Use Name)

	4
	CT10
	 CI # N Integration Test Scripts and Peer Review Minutes

	4
	CS10
	 Module # 1(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # 1 Test

	5
	CS22
	 Unit Test Script for Module #1 and Peer Review

 Minutes

	5
	CS24
	 Unit Test Report for Module #1

	4
	CS10
	 Module # 2(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # 2 Test

	5
	CS22
	 Unit Test Script for Module #2

	5
	CS24
	 Unit Test Report for Module #2

	4
	CS10
	 Module # M(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # M Test

	5
	CS22
	 Unit Test Script for Module #M and Peer Review

 Minutes

	5
	CS24
	 Unit Test Report for Module #M

	4
	CT20
	 CI # N Integration Test Report

	3
	TD11
	 Release Package (Draft)

	NA
	NA
	MILESTONE - Product Baseline

	3
	CD65
	 Minutes - Test Readiness Review I (TRR I)

	3
	CD10
	 Function & System Test (FST) Report

	3
	TD41
	 Minutes Construction Phase Comp. Mgt Review (TRR II)

	3
	CD60
	 Other Construction Products

	4
	CD61
	 Accreditation Recommendation

	4
	CD62
	 System Security Authorization Agreement (SSAA)

	4
	CD64
	 PAR Audit Report for Construction

	3
	CZ99
	 Construction Products Not Otherwise Coded

Each iteration will create partial products in the construction phase. At the end of each iteration, some requirements or parts of requirements are satisfied. Each iteration may produce only part of these products. However, the Project Development Team (PDT) integrates the product parts in the final iteration to produce the complete products. During iteration, peer reviews will be conducted on parts of products completed or integrated with parts completed during previous iterations.

An example of a three iteration release and their products follow:

Iteration 1: Construct the Outline of the User Manual, CI #3, and the Database. Peer Review these partial products. Do the Unit and Integration Tests. Do the TRR I. Do the Function and System Tests for the requirements associated with these products.

Iteration 2: Construct the Rest of the User Manual, CI #2 and Module 5 of CI #1 and Peer Review these partial products. Do the Unit tests and integrate these products with the products from Iteration 1 and do the Integration Tests. Do the TRR I. Do the Function and System Tests for the requirements associated with these integrated products. The Function and System tests may include some of those that tested Iteration 1.

Iteration 3: Construct the remaining products including the rest of the Modules of CI #1. Peer review these partial products. Do the unit tests and integrate these products with the products from Iterations 1 and 2 and do the Integration Tests. Do a Complete TRR I. Do the Function and System Tests for the requirements associated with these integrated products. The Function and System tests may include some of those that tested Iterations 1 and 2. Do the TRR II and End of Phase Management Review.

Currently, there is no software development methodology that uses Construction Phase Iterations. However, for sustainment systems, this may be a viable approach, especially when a release consists of a number of DRs that do not require changes in the design.

4.3 Design and Construction Phase Iterations

Re Ev An PI De Co Ind Im CuS CI
& Pr Te
----------------------------(
 -----------------(
 -----------------(
 -----------------(
 -------------------------------------(
The iteration will cover both the design and construction phase. This implies that the SEP products (with tailoring) through planning have been completed. There is a completed preliminary design. Each iteration will create partial products in the design and construction phase. At the end of each iteration, some requirements or parts of requirements are satisfied or some risks associated with implementing those requirements have been analyzed. The End of Phase PAR Audit Reports and Management Reviews must occur on the last iteration for both the Design Phase and the Construction Phase.

The list of all the products in the iterations are in the table below:

	NA
	NA
	PHASE - Design

	NA
	DD90
	PLANNING PACKAGE - Design

	NA
	NA
	MILESTONE - Preliminary Design Review

	3
	DD80
	 Database Specification (DS) and Peer Review Minutes

	3
	DD90
	 Design Document (DD) and Peer Review Minutes

	3
	DD70
	 Interface Requirements Agreement (IRA)

	3
	DD40
	 Test Descriptions for Function & System Test (final)

	3
	AD80
	 Software Development File (SDF)

	3
	DD50
	 Requirements Traceability Matrix (RTM) created in Dynamic Object- Oriented Requirements System (DOORS)

	3
	DD61
	 PAR Audit Report for Design Phase

	3
	DD62
	 Minutes - CDR and Design Phase Comp. Mgt Review

	NA
	NA
	MILESTONE - Critical Design Review

	3
	DZ99
	 Design Product Not Otherwise Coded

	NA
	NA
	PHASE - Construction

	3
	PD60
	 Implementation Plan (IP) and Peer Review Minutes

	3
	CD20
	 User Manual (UM)/On-line Help and Peer Review Minutes

	3
	CD30
	 Operator Manual (OM) and Peer Review Minutes

	3
	CD40
	 Trusted Facilities Manual (TFM) and Peer Review Minutes

	3
	CD50
	 Security Features User Guide (SFUG) and Peer Review

 Minutes

	NA
	C000
	PLANNING PACKAGE - Source

	3
	CD00
	 Database

	3
	C000
	 CI #1 (Use Name)

	4
	CT10
	 CI # 1 Integration Test Scripts and Peer Review Minutes

	4
	CS10
	 Module # 1(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # 1 Test

	5
	CS22
	 Unit Test Script for Module #1 and Peer Review

 Minutes

	5
	CS24
	 Unit Test Report for Module #1

	4
	CS10
	 Module # 2(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # 2 Test

	5
	CS22
	 Unit Test Script for Module #2

	5
	CS24
	 Unit Test Report for Module #2

	4
	CS10
	 Module # M(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # M Test

	5
	CS22
	 Unit Test Script for Module #M and Peer Review

 Minutes

	5
	CS24
	 Unit Test Report for Module #M

	4
	CT20
	 CI # 1 Integration Test Report

	3
	C000
	 CI #2 (Use Name)

	4
	CT10
	 CI # 2 Integration Test Scripts and Peer Review Minutes

	4
	CS10
	 Module # 1(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # 1 Test

	5
	CS22
	 Unit Test Script for Module #1 and Peer Review

 Minutes

	5
	CS24
	 Unit Test Report for Module #1

	4
	CS10
	 Module # 2(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # 2 Test

	5
	CS22
	 Unit Test Script for Module #2

	5
	CS24
	 Unit Test Report for Module #2

	4
	CS10
	 Module # M(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # M Test

	5
	CS22
	 Unit Test Script for Module #M and Peer Review

 Minutes

	5
	CS24
	 Unit Test Report for Module #M

	4
	CT20
	 CI # 2 Integration Test Report

	3
	C000
	 CI #N (Use Name)

	4
	CT10
	 CI # N Integration Test Scripts and Peer Review Minutes

	4
	CS10
	 Module # 1(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # 1 Test

	5
	CS22
	 Unit Test Script for Module #1 and Peer Review

 Minutes

	5
	CS24
	 Unit Test Report for Module #1

	4
	CS10
	 Module # 2(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # 2 Test

	5
	CS22
	 Unit Test Script for Module #2

	5
	CS24
	 Unit Test Report for Module #2

	4
	CS10
	 Module # M(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # M Test

	5
	CS22
	 Unit Test Script for Module #M and Peer Review

 Minutes

	5
	CS24
	 Unit Test Report for Module #M

	4
	CT20
	 CI # N Integration Test Report

	3
	TD11
	 Release Package (Draft)

	NA
	NA
	MILESTONE - Product Baseline

	3
	CD65
	 Minutes - Test Readiness Review I (TRR I)

	3
	CD10
	 Function & System Test (FST) Report

	3
	TD41
	 Minutes Construction Phase Comp. Mgt Review (TRR II)

	3
	CD60
	 Other Construction Products

	4
	CD61
	 Accreditation Recommendation

	4
	CD62
	 System Security Authorization Agreement (SSAA)

	4
	CD64
	 PAR Audit Report for Construction

	3
	CZ99
	 Construction Products Not Otherwise Coded

The timebox software development methodology and possibly the spiral development methodology use iterations that cover the design and construction phases. However, for sustainment systems, this may be a viable approach, especially when a release consists of a number of DR’s that may require changes in the detailed design as well as the construction.

4.4 Analysis, Planning, Design and Construction Phase Iterations

----------(
 Sequential

Iterations (1 or more)

Sequential
 a. The iteration will cover the analysis, planning, design and construction phases. This implies that essentially the SEP products associated with the proposal have been completed. There is a completed proposal. Each iteration will create partial products in the analysis, planning, design and construction phase. At the end of each iteration, some requirements or parts of requirements are satisfied or some risks associated with implementing those requirements have been analyzed. The End of Phase PAR Audit Reports and Management Reviews must occur on the last iteration for the Analysis, Planning, Design and Construction Phases.

 b. Most of the products in the Planning phase do not change significantly as the requirements change and are used in subsequent phases of the iteration and future iterations. Therefore, in the first iteration, the stable products in the Planning phase need to be constructed and then updated in future iterations. If a product in the Planning phase is not constructed in the first iteration, it should be justified in the Tailoring Worksheet.

 c. All of the other products should be constructed, partially constructed or updated to reflect the requirements that exist at the start of the phase and the selection of the requirements to implement or prototype in the current iteration. The Release Schedule and Cost is a product that may need to be updated in the current iteration based on changes in the requirements or lessons learned from the previous iterations.

The list of all the products in the iterations are in the table below:

	NA
	NA
	PHASE - Analysis

	3
	AD71
	 Minutes - Joint Application Design (JAD) Sessions

	3
	AD72
	 Business Policy Analysis

	3
	??
	General Requirements Specification (GRS)

	3
	AD10
	 Concept of Operations (ConOps) and Peer Review Minutes

	3
	AD20
	 System Subsystem Specifications (SSS) and Peer Review

 Minutes

	3
	AD30
	 Software Requirements Specifications (SRS) and Peer

 Review Minutes

	3
	DD71
	 Interface Requirements Agreement (IRA) - draft and Peer

 Review Minutes

	3
	DD50
	 Requirements Traceability Matrix draft (RTM) in DOORS

	3
	DD91
	 Preliminary Design Document (Design Document (DD) and

 Database Specification (DS) - drafts) and Peer Review

 Minutes

	3
	AD73
	 SEP Tailoring Worksheet

	3
	AD40
	 Project Specific WBS

	3
	AD50
	 Software Development Plan (SDP) and Peer Review Minutes

	3
	AD76
	 Updated Risk Radar and Peer Review Minutes

	3
	AD60
	 Release Schedule and Cost

	NA
	NA
	MILESTONE - Allocated Baseline

	3
	AD70
	 Other Analysis Products

	4
	AD74
	 Program Requirements Worksheet

	4
	AD77
	 PAR Audit Report for Analysis

	4
	AD78
	 Minutes - Analysis Phase Comp. Mgt Review

	3
	AZ99
	 Analysis Products Not Otherwise Coded

	NA
	NA
	PHASE - Project Planning

	3
	PD10
	 Configuration Management Plan (CMP) and Peer Review

 Minutes

	3
	PD20
	 Security Certification & Accreditation (C&A) Plan and Peer

 Review Minutes

	3
	PD61
	 Implementation Plan (IP) (Draft) and Peer Review Minutes

	3
	PD50
	 Test and Evaluation Master Plan (TEMP) and Peer Review

 Minutes

	3
	PD30
	 Security Test & Evaluation (ST&E) Plan and Peer Review

 Minutes

	3
	PD40
	 Test Plan (TP) and Peer Review Minutes

	3
	DD41
	 Test Descriptions for Function & System Test (Draft) and

 Peer Review Minutes

	3
	PD70
	 Other Project Planning Products

	4
	PD71
	 Release Request Letter

	4
	PD72
	 Project Training Plan

	4
	PD73
	 Intergroup Coordination Checklist

	4
	PD74
	 PAR Audit Report for Project Planning Phase

	4
	PD75
	 Minutes - Project Planning Phase Comp. Mgt Review

	3
	PZ99
	 Project Planning Products Not Otherwise Coded

	NA
	NA
	PHASE - Design

	NA
	DD90
	PLANNING PACKAGE - Design

	NA
	NA
	MILESTONE - Preliminary Design Review

	3
	DD80
	 Database Specification (DS) and Peer Review Minutes

	3
	DD90
	 Design Document (DD) and Peer Review Minutes

	3
	DD70
	 Interface Requirements Agreement (IRA)

	3
	DD40
	 Test Descriptions for Function & System Test (final)

	3
	AD80
	 Software Development File (SDF)

	3
	DD50
	 Requirements Traceability Matrix (RTM) in DOORS

	3
	DD61
	 PAR Audit Report for Design Phase

	3
	DD62
	 Minutes - CDR and Design Phase Comp. Mgt Review

	NA
	NA
	MILESTONE - Critical Design Review

	3
	DZ99
	 Design Product Not Otherwise Coded

	NA
	NA
	PHASE - Construction

	3
	PD60
	 Implementation Plan (IP) and Peer Review Minutes

	3
	CD20
	 User Manual (UM)/On-line Help and Peer Review Minutes

	3
	CD30
	 Operator Manual (OM) and Peer Review Minutes

	3
	CD40
	 Trusted Facilities Manual (TFM) and Peer Review Minutes

	3
	CD50
	 Security Features User Guide (SFUG) and Peer Review

 Minutes

	NA
	C000
	PLANNING PACKAGE - Source

	3
	CD00
	 Database

	3
	C000
	 CI #1 (Use Name)

	4
	CT10
	 CI # 1 Integration Test Scripts and Peer Review Minutes

	4
	CS10
	 Module # 1(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # 1 Test

	5
	CS22
	 Unit Test Script for Module #1 and Peer Review Minutes

	5
	CS24
	 Unit Test Report for Module #1

	4
	CS10
	 Module # 2(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # 2 Test

	5
	CS22
	 Unit Test Script for Module #2

	5
	CS24
	 Unit Test Report for Module #2

	4
	CS10
	 Module # M(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # M Test

	5
	CS22
	 Unit Test Script for Module #M and Peer Review

 Minutes

	5
	CS24
	 Unit Test Report for Module #M

	4
	CT20
	 CI # 1 Integration Test Report

	3
	C000
	 CI #2 (Use Name)

	4
	CT10
	 CI # 2 Integration Test Scripts and Peer Review Minutes

	4
	CS10
	 Module # 1(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # 1 Test

	5
	CS22
	 Unit Test Script for Module #1 and Peer Review

 Minutes

	5
	CS24
	 Unit Test Report for Module #1

	4
	CS10
	 Module # 2(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # 2 Test

	5
	CS22
	 Unit Test Script for Module #2

	5
	CS24
	 Unit Test Report for Module #2

	4
	CS10
	 Module # M(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # M Test

	5
	CS22
	 Unit Test Script for Module #M and Peer Review

 Minutes

	5
	CS24
	 Unit Test Report for Module #M

	4
	CT20
	 CI # 2 Integration Test Report

	3
	C000
	 CI #N (Use Name)

	4
	CT10
	 CI # N Integration Test Scripts and Peer Review Minutes

	4
	CS10
	 Module # 1(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # 1 Test

	5
	CS22
	 Unit Test Script for Module #1 and Peer Review

 Minutes

	5
	CS24
	 Unit Test Report for Module #1

	4
	CS10
	 Module # 2(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # 2 Test

	5
	CS22
	 Unit Test Script for Module #2

	5
	CS24
	 Unit Test Report for Module #2

	4
	CS10
	 Module # M(Use Name), Code and Peer Review Minutes

	4
	CS20
	 Module # M Test

	5
	CS22
	 Unit Test Script for Module #M and Peer Review

 Minutes

	5
	CS24
	 Unit Test Report for Module #M

	4
	CT20
	 CI # N Integration Test Report

	3
	TD11
	 Release Package (Draft)

	NA
	NA
	MILESTONE - Product Baseline

	3
	CD65
	 Minutes - Test Readiness Review I (TRR I)

	3
	CD10
	 Function & System Test (FST) Report

	3
	TD41
	 Minutes Construction Phase Comp. Mgt Review (TRR II)

	3
	CD60
	 Other Construction Products

	4
	CD61
	 Accreditation Recommendation

	4
	CD62
	 System Security Authorization Agreement (SSAA)

	4
	CD64
	 PAR Audit Report for Construction

	3
	CZ99
	 Construction Products Not Otherwise Coded

The extreme programming software development methodology and possibly the spiral development methodology use iterations that cover the analysis, planning, design and construction phases.

4.5 Sequential and Simultaneous Iterations

Iterations have been presented as if they occur sequentially. It may appear that when one iteration ends, the next iteration begins. However, iterations can occur simultaneously. For example, the Construction Phase Iterations could all start at the same time with little risk if the requirements are independent. In the Analysis, Planning, Design and Construction Phase Iterations, once the requirements are grouped and associated with iterations, then each iteration can begin. However, the risk of failing during integration could be considerable. It might be more reasonable to create a high level design with clear interfaces before beginning iterations concurrently. Even then, discoveries during detailed design and coding may modify the interfaces causing integration failure and rework.

& Pr

Re Ev

Cl

Im

CuS

Ind

Te

Co

De

Pl

An

ssssSequential

Reject

Implement

Accept

Evaluate Release

Timebox Development

Build & Evolve Prototype

Customer Review and Feedback

Requirements Analysis & Design

& Pr

Re Ev

Cl

Im

CuS

Ind

Te

Co

De

Pl

An

Page 26 of 26

_1129965249.doc

Implementation

Testing

Complete System

Construction

Design

Operational Prototype Evaluation

Requirements Evaluation and Proposal

Analysis

Analysis

Design

Testing

Construction

Implementation

Project Planning

Build 1

Build N

_1129965257.doc

Release Prototype

Evaluate and Refine Requirements

Evaluate and Refine Requirements

Simulate

Prototype (local)

Build Prototype

Keep or Discard Prototype

Requirements Evaluation and Proposal

Analysis

Specify Requirements/Design

Design

Testing

Construction

Implementation

Project Planning

_1129965244.doc

Testing

Full-Capability System

Construction

Design

Limited-Capability System

Requirements Evaluation and Proposal

Project Planning

Implementation

Design

Testing

Construction

Implementation

Analysis

Build 1

Build N

